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Abstract

This thesis presents a collection of results in the representation theory of

the general linear group in defining characteristic, with a focus on multilinear

constructions, explicit maps and combinatorial techniques.

We use tableaux to describe concrete models for the the Schur and Weyl

endofunctors, and hence in particular the Weyl modules, their duals, and

the Specht modules.

We establish a number of modular plethystic isomorphisms – isomor-

phisms between modules obtained by iterated Schur and Weyl endofunctors –

for GL2(K), where K is an arbitrary field. Our isomorphisms are generalisa-

tions of classical results, and require dualities that were not present in charac-

teristic 0. An example is Hermite reciprocity Symm SymlE ∼= Syml SymmE,

where E is the natural representation. We exhibit explicit maps for our

isomorphisms.

We study the image under the inverse Schur functor of the Specht module

for the symmetric group, proving a necessary and sufficient condition on the

indexing partition for this image to be isomorphic to the dual Weyl module

in characteristic 2, and giving an elementary proof that this isomorphism

holds in all cases in all other characteristics. We use this result to identify

some indecomposable Specht modules. When the isomorphism does not hold,

we describe some particular examples and prove some additional results,

including a bound on the dimension of the kernel of the quotient map onto

the dual Weyl module.

Finally we investigate a family of Markov chains on the set of simple

representations of the finite group SL2(Fp), defined by tensoring with a fixed

simple module and choosing an indecomposable non-projective summand. We

draw connections between the properties of the chain and the representation

theory of SL2(Fp), emphasising symmetries of the tensor product. We also

give a novel elementary proof of the decomposition of tensor products of

simple modular SL2(Fp)-representations.
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Errata and updates

Updated April 2023.

• Bibliography updated to include journal information of recent publica-

tion ([McD23]).

Updated April 2022.

• Permutation τ ′ corrected to τ◦ in the penultimate line of displayed

math on page 96.

• Indices j and k corrected to j◦ and k◦ in the definitions of Nj and Nk

on page 100.

• Lower bound on |K| reduced from pε+3 to 1 + 2pε+1 in statement of

Proposition 11.14.

• Defect sets of Symp Sympε E and of Sympε SympE corrected from

{0, pε, pε+1} to { jp | 0 6 j 6 pε } in proof of Proposition 11.14.

• Upper summation index corrected from l− i to i in calculation of Mγvi

and Mγwi on pages 126 and 127 respectively.

• Number of terms in the sum corrected from a to pα on page 131.

• Improved phrasing in statement of Theorem C, statement and proof of

Proposition 11.14, and discussion on weights and defect sets for finite

fields on page 116.

• Bibliography updated to include journal information of recent publica-

tions ([dBPW21], [McD21], [McD22], [McDW22], [BW22]).
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Introduction

0.1. Overview

This thesis collects a number of results on the representation theory of

the general linear group in defining characteristic, with a focus on multilinear

constructions, explicit maps and combinatorial techniques. The multilinear

constructions are known as Schur and Weyl endofunctors, which we denote

∇λ and ∆λ respectively. When applied to the natural representation E

of the general linear group GLn(K) over a field K, these functors yield

the dual Weyl and Weyl modules. These modules are of great importance

in the study of the representation theory of the general linear group: the

socles of the dual Weyl modules (or equivalently, the heads of the Weyl

modules) form a complete irredundant set of simple modules in the category

of polynomial representations. When these endofunctors are applied to the

natural permutation module of the symmetric group Sr, after restriction to

a certain subspace we obtain the Specht modules Sλ and their duals, which

likewise give rise to a complete irredundant set of simple modules (the heads

of the Specht modules indexed by p-regular partitions, or the socles of the

dual Specht modules indexed by p-restricted partitions).

The first goal of this thesis is to provide concrete descriptions of the Schur

and Weyl endofunctors – and hence the Weyl, dual Weyl and Specht modules

– viewing both functors both as explicit submodules and as explicit quotients

of symmetric or exterior powers. This is achieved in Chapter I. Tableaux and

tabloids are used to model the elements of our modules in a visual way which

is amenable to combinatorial techniques, and which holds for representations

of any group over any field. The majority of this construction is well-known,

at least in the context of the general linear or symmetric groups; however, it

has not appeared all in one place in our generality, and some existing sources

rely on excess machinery such as the theory of algebraic groups and the Schur

algebra. Additionally, our description of the row Garnir relations satisfied

by the Weyl endofunctors is a new generalisation of the row relations for

the dual Specht module. A review of existing constructions is given below.

6



INTRODUCTION 7

We aim to provide a unified, elementary treatment; the author hopes that

Chapter I will serve as a helpful and thorough reference for the Schur and

Weyl endofunctors which brings out both their simplicity and utility.

A crucial property of the Weyl and dual Weyl modules is that they are

polynomial. In Chapter II we introduce this property and its connection

with the representation theory of the symmetric group: the Schur functor F
and its one-sided inverses G⊗ and GHom (not to be confused with the Schur

endofunctors above). Once again we give elementary definitions, bypassing

the need for the Schur algebra and thereby presenting constructions of the

Schur functor and its inverses which generalise to finite fields (see Remark 6.22

for a comparison with the Schur algebra approach).

The remaining three chapters collect the author’s results on represen-

tations of the general linear group in defining characteristic. Each of these

chapters is logically independent from the other two. Chapter III draws on

[McDW22], investigating isomorphisms between KGL2(K)-modules obtained

by iterated Schur and Weyl endofunctors, generalising some well-known clas-

sical results to the modular case; Chapter IV draws on [McD21], investigating

the image of the Specht modules under the inverse Schur functor in arbitrary

characteristic; Chapter V draws on [McD22], investigating tensor products

of representations of the finite group SL2(Fp) and a random walk on their

indecomposable summands. An overview of each of these chapters can be

found below.

0.2. Existing constructions of the Schur and Weyl endofunctors

There are many treatments of the Schur and Weyl endofunctors, especially

in the case of their application to representations of the general linear group

GLn(K) and the symmetric group Sr.

Our submodule construction of the Schur endofunctors, including the

use of the Garnir relations, is a generalisation to arbitrary groups of the

construction of the dual Weyl modules given by de Boeck, Paget and Wildon

[dBPW21]. Their GL-polytabloids we call simply polytabloids, and their

snake relations are a particular case of our Garnir relations. This is also
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the construction used by the author in [McD21]. When used to obtain the

Specht module, this construction becomes that due to James [Jam78].

Green [EGS08, §4] constructs the dual Weyl module (which he denotes

Dλ,K) as a module for the Schur algebra spanned by bideterminants, and

shows that it can also be obtained as the quotient of the tensor power E⊗|λ|

by relations combining our JAlt and Garnir relations ([EGS08, §4.6]), or by

inducing a certain character from a Borel subgroup to GLn(K) ([EGS08,

§4.8]). The Weyl module is defined by Green [EGS08, Section 5] to be its dual

(which he denotes Vλ,K), and is shown to be isomorphic to the Carter–Lusztig

Weyl module [CL74, Section 3.2] (denoted V̄ λ).

Green also shows that the Weyl module is generated by its highest weight

vector [EGS08, (5.3b)]. Wildon [Wil20] uses this as a characterising property

of the module as a submodule of the exterior power in order to identify,

in the case that K is infinite, a basis consisting of the elements we call

copolytabloids.

In the case K = C, Fulton constructs the dual Weyl module (which he

denotes Eλ and calls the Schur module) as the quotient of an exterior power

by his quadratic relations [Ful97]. This is equivalent to our construction of

the Schur endofunctor as the quotient by the Garnir relations.

James constructs the dual Weyl module (which he denotes W λ and,

unfortunately in the light of modern terminology, calls the Weyl module) by

summing the images of the space of polytabloids of symmetric type under

maps which induce each possible weight [Jam78, Definitions 17.2, 17.4 and

26.4, pp. 65,127,129]. The correspondence between this and our construction

is noted in [dBPW21, Remark 2.16].

Constructions of the Schur and Weyl endofunctors themselves appear

in [Kou91] and [ABW82] (the latter using the name “coSchur” in place of

“Weyl”). Kouwenhoven’s construction is through the letter place algebra.

Akin, Buchsbaum and Weyman’s definition, given for skew partitions, is

as the image of a recursively defined map; this presents the endofunctors

as quotients, but in contrast to our construction does not give an explicit

model.
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The row Garnir relations – described in §3.4 to present the Weyl endo-

functor as a quotient of a symmetric power – do not appear in the literature.

These relations are a non-trivial generalisation of the row relations for the

dual Specht module.

0.3. Chapter III: Modular plethystic isomorphisms

In the context of representation theory, plethysm refers to the composition

of Schur and Weyl endofunctors, and the goal is to describe modules of the

form ∇µ∇λE, and those with a ∆ in place of a ∇, where E is the natural

GLn(K)-module. In this chapter we describe or rule out the existence of a

number of isomorphisms between representations of GL2(K) of this form, in

arbitrary characteristic. We call such isomorphisms plethystic isomorphisms.

This chapter draws on the author’s joint work with Mark Wildon [McDW22].

The characteristic-free isomorphisms we prove, stated for the special

linear group SL2(K) where K is an arbitrary field, are: Hermite reciprocity

Symm SymlE ∼= Syml SymmE;

the Wronskian isomorphism

Symm SymlE ∼=
∧m Syml+m−1E;

and the complementary partition isomorphism

∇λ SymlE ∼= ∇λ◦ SymlE,

where λ◦ denotes the complement of λ in a rectangle with l+ 1 rows. In each

case we exhibit an explicit map. Here Syml denotes the usual symmetric

power, a quotient of the tensor power; Syml denotes its dual, the lower

symmetric power, defined in §3.2.

On the other hand, we show that the conjugate partition isomorphism

∇λ Symm+λ′1−1E ∼= ∇λ′ Symm+λ1−1E,

known to hold over C under certain conditions on λ by [Kin85, §4], does

not have a modular analogue under any combination of swapping Schur

and Weyl endofunctors and upper and lower symmetric powers. We prove

this by considering hook partitions of prime power arm and leg length, and
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introducing a new invariant called the defect set to distinguish the modules.

The author credits Mark Wildon for the introduction of this invariant.

Many classical (characteristic 0) plethystic isomorphisms are known,

including the classical versions of the above isomorphisms. Some have been

known for a long time – Hermite reciprocity, for example, dates back to the

19th century – while more recent works on the subject include King’s [Kin85]

and Paget and Wildon’s [PW21]. In the modular case, only compositions of

symmetric and exterior powers have previously been studied: [Kou90b] shows

the failure of the näıve generalisation of Hermite reciprocity; [AFP+19] gives

correct generalisations of Hermite reciprocity and the Wronskian isomorphism,

but lacks our explicit description of the maps. Moreover, our approach to

the Wronskian isomorphism is more general than, and uses different methods

to, both [AFP+19] and [McDW22]: here we prove that there is an injection

Symm SymlE ↪→ ∧m Syml+m−1E where m =
(
m+n−1

m

)
and E is the natural

representation of SLn(K) for any n. Further comparison of our work with

existing results, both classical and modular, is given in the introduction to

Chapter III.

Though this thesis does not study it, we remark that plethysm also has

a combinatorial definition: it is a certain product of symmetric functions,

denoted ◦. This is the original meaning of the term, defined for example in

[Mac98, Section 1.8]. The connection with representation theoretic plethysm

is characters: the formal character of ∇µE is the Schur polynomial sλ, and

the formal character of ∇µ∇λE is the plethysm product sµ ◦ sλ. Here,

the formal character of a representation V of GLn(K) is the polynomial

whose coefficient of
∏
i xαi is the dimension of the α-weight space of V (see

Definition 6.1 for the definition of weight spaces). In characteristic zero, a

representation is determined by its formal character, and so, in the classical

setting, decomposing ∇µ∇λE into irreducibles is equivalent to writing sµ ◦sλ
as a linear combination of Schur polynomials. Finding a combinatorial

interpretation of these coefficients is the task set by Stanley’s Problem 9

([Sta99]).
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0.4. Chapter IV: The Specht module under the inverse Schur

functor

The inverse Schur functor G⊗ is a map from the category of representations

of the symmetric group to the category of (polynomial) representations of the

general linear group (see §6 for the definition of G⊗). This chapter studies,

in all characteristics, the image of the Specht module Sλ under the inverse

Schur functor, drawing on the author’s [McD21].

It has been known for some time that in characteristics other than 2 and

3, the image G⊗(Sλ) is isomorphic to the dual Weyl module ∇λE [KN01,

3.2]. This fact is also known in the more general context of q-Schur algebras

and Hecke algebras of quantum characteristic at least 4 [HN04, Theorem

3.4.2]. A related result identifying the image of the twisted Young module in

characteristics other than 2 is given in [CPS96, Theorem 5.2.4].

Here we give a necessary and sufficient condition on the indexing partition

for the isomorphism G⊗(Sλ) ∼= ∇λE to hold in characteristic 2, and give

an elementary proof that this isomorphism holds in all cases in all other

characteristics. The condition is this: provided dimE > |λ| − 2, there is an

isomorphism G⊗(Sλ) ∼= ∇λE if and only if λ is 2-regular, or if λ1 = λ2 > λ3+2

and λ minus its first part is 2-regular. The novelty of these results is in

characteristics 2 and 3. Additionally, the approach here establishes the

isomorphisms in characteristics other than 2 without the level of homological

algebra used in the accounts cited above.

We deduce from this result some new examples of indecomposable Specht

modules: whenever λ meets the condition above, Sλ is indecomposable.

Determining the decomposability Specht modules in characteristic 2 is an

open problem; the first family of decomposable Specht modules was identified

by Murphy [Mur80], after which there was little progress until the recent

results of Dodge and Fayers [DF12] and Donkin amd Geranios [DG20]. Our

result adds to the list of Specht modules whose decomposability is known.

When the isomorphism G⊗(Sλ) ∼= ∇λE does not hold, the dual Weyl

module is still a quotient of the image G⊗(Sλ). We prove some additional

results in this case: we demonstrate that the image need not have a filtration
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by dual Weyl modules; we bound the dimension of the kernel of the quotient

map; and we give some explicit descriptions for particular cases.

0.5. Chapter V: Tensor products of representations of SL2(Fp)

Our final chapter presents decompositions of tensor products of certain

representations of the finite group SL2(Fp) in defining characteristic, and

studies a random walk on the representations of SL2(Fp) driven by taking

tensor products. These results are drawn from the author’s [McD22].

We offer a novel elementary proof of the so-called Clebsch–Gordan rule,

which describes the decomposition of tensor products of simple modules.

Our approach is to use a family of GL2(K)-homomorphisms which exhibit

explicit submodules and quotients of the tensor products, and use self-duality

to inductively show that these maps split over SL2(Fp). This yields a proof of

the rule which finds the projective summands more efficiently than inductively

tensoring by the natural representation (as in [Glo78, (5.5) and (6.3)] or

[Kou90a, Corollary 1.2(a) and Proposition 1.3(c)]), and that does not require

the machinery of tilting theory (as in [EH02, Lemma 4]). Adding to the work

of [McD22], we then apply the Clebsch–Gordan rule to decompose tensor

products involving projective indecomposable modules and to decompose

symmetric squares.

The random walk we study is defined by tensoring by a fixed simple

module and choosing a non-projective indecomposable summand of the result

(with probability depending on a weighting given to each simple module).

This is inspired by [BDLT20], which considers Markov chains defined by

choosing composition factors (rather than indecomposable summands) of

tensor products; the Benkart–Diaconis–Liebeck–Tiep chains for SL2(Fp) are

examined in §3.2 of [BDLT20], in the cases of tensoring with the natural

module and the Steinberg module. We show our new family of random

walks are reversible and find their connected components and their stationary

distributions (for any choice of simple module to tensor with). We draw

connections between these properties of the chain and the representation

theory of SL2(Fp), emphasising symmetries of the tensor product.
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0.6. Conventions and notation

Let K denote a field, which may be of characteristic 0 or of prime charac-

teristic p. Let G denote a (not necessarily finite) group. Most commonly G

will be either a general linear group GLn(K) of n× n invertible matrices; its

subgroup the special linear group SLn(K) of n×n matrices with determinant

1; or the symmetric group Sr of permutations of r symbols (where n and r

are some positive integers). We write KG for the group algebra of formal

K-linear sums of elements of G.

We still study finite dimensional representations of G over K. Such a

representation can be thought of either as a module for the group algebra KG,

or a group homomorphism ρ : G→ GLd(K) for some integer d which is the

dimension of the representation as a K-vector space. Given a KG-module V ,

we let ρV denote the corresponding group homomorphism G→ GLdimV (K);

note that constructing ρV from V requires a choice of basis for V . We will use

the terms “representation of G over K” and “KG-module” interchangeably.

We generally work with left KG-modules, but have permutation groups

acting on the right. This allows us to use the action of permutation groups

to construct interesting modules, without confusing the permutation group

with the group G whose representation theory is our primary interest.

Given a K-vector space V , we let V ∗ = HomK(V,K) denote the dual

K-vector space. Given a K-basis {v1, . . . , vd} for V , the dual basis for

V ∗ is {v∗1, . . . , v∗d} where v∗i (vi) = 1 and v∗i (vj) = 0 for all j 6= i. In §3.1

we will describe two ways in which the dual vector space also becomes a

representation.

A representation of particular importance is the natural representation

E of a group G 6 GLn(K) of n × n matrices. This representation has

dimension n and with respect to a given basis the matrices of G act by

matrix multiplication; that is, with respect to this basis, the corresponding

homomorphism is the embedding ρE : G ↪→ GLn(K). Explicitly we choose a

basis X1, . . . , Xn such that for all g ∈ G 6 GLn(K) we have

gXi =
n∑
j=1

gj,iXj .
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Given any set X we let SX denote the symmetric group on X (that is,

the group of permutations of X). We write elements of SX on the right of

their arguments, and hence multiply permutations left to right (for example,

we have (x y z)(x y) = (y z) for elements x, y, z ∈ X).

For an integer r > 1, we write [r] = {1, . . . , r} and [r]0 = {0, 1, . . . , r}.
We write 1 for the indicator function for propositions (so that, for

example, 1[p > 2] evaluates to 1 if p > 2 and to 0 otherwise).

Given a group G and a subgroup H, we write G/H for the set of left

cosets gH of H in G, and H\G for the set of right cosets Hg of H in G.

Given also a subgroup F , we write F\G/H for the set of double cosets FgH

of F on the left and H on the right in G. Abusing notation, we denote sets

of coset representatives in the same way.

For an integer r > 1, we write Symr and
∧r for the rth symmetric and

exterior powers, viewed as quotients of the tensor power. Explicitly,

Symr V ∼= V ⊗r�〈w · σ − w | w ∈ V ⊗r, σ ∈ Sr 〉K ,∧r V ∼= V ⊗r�〈w ∈ V ⊗r | w · τ = w for some transposition τ ∈ Sr 〉K .

The dual notion of the symmetric power is introduced in §3.2; this is defined

as the submodule of the tensor power consisting of symmetric tensors.

A glossary of symbols is provided on page 208.



CHAPTER I

Multilinear constructions

This chapter presents elementary constructions of the Schur and Weyl

endofunctors, which are endofunctors on the category of representations of a

group G over a field K.

Our approach relies on tableaux and tabloids, which are introduced in §1.

The Schur endofunctor is constructed, as both a submodule of a symmetric

power and a quotient of an exterior power, in §2. The Weyl endofunctor is

defined by pre- and post-composing the Schur endofunctor with the duality

functor; in §3, we describe it as both a submodule of an exterior power and

a quotient of (the dual of) a symmetric power. The row Garnir relations we

describe in §3.4 are new.

The work of the first three sections of this chapter is valid for any group.

Nevertheless our primary interests are the general linear group GLn(K) and

the symmetric group Sr. In §4 we apply the Schur and Weyl endofunctors

to the natural representation of GLn(K), obtaining the dual Weyl and Weyl

modules, and to the natural permutation representation of Sr, obtaining

(after restriction to a certain subspace) the Specht modules and their duals.

15



16 I. MULTILINEAR CONSTRUCTIONS

1. Tableaux, tabloids and Garnir relations

In this section we define the combinatorial objects which will be used

to construct our representations. These objects are tableaux and their

equivalence classes, tabloids.

The entries of our tableaux will be basis vectors for a left KG-module

V for a group G. We denote the basis B and choose a total order on it. For

convenience, we will often think of B as being the set [d], where d is the

dimension of V , writing i for the basis vector labelled by i.

The G-action on V induces a “diagonal” left G-action on the space of

tableaux (and their equivalence classes) by entrywise action and multilinear

expansion, as illustrated in Example 2.2. The K-vector spaces defined in

this chapter thus become left KG-modules. We denote these group actions

by concatenation.

1.1. Partitions and tableaux

A composition of r is a sequence of strictly positive integers whose sum

is r. A partition of r is a weakly decreasing composition of r; we use λ to

denote a partition throughout. The sum of the parts of a partition λ is called

its size, denoted |λ|. The number of parts of a partition λ is called its length,

denoted `(λ); by convention we interpret λi = 0 for i > `(λ).

The Young diagram of a partition λ is the set [λ] = { (i, j) | 1 6 i 6

`(λ), 1 6 j 6 λi }, which we picture lying in the plane using the “English”

notation: the x-direction downward and the y-direction rightward. An

element of a Young diagram is called a box. Let rowi[λ] and colj [λ] denote

the sets of boxes in row i and column j of [λ] respectively.

The conjugate (or transpose) of a partition λ, denoted λ′, is the partition

defined by λ′i = |{ j > 1 | λj > i }| for 1 6 i 6 λ1. This is the partition

obtained by reflecting the Young diagram of λ over the main diagonal.

A tableau of shape λ with entries in B is a function [λ]→ B. The image

of a box b ∈ [λ] under a tableau t is the entry of t in b. The weight of t is

the multiset of entries of a tableau t, expressed as a composition of n via the
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total ordering on B. We depict a tableau t by filling the boxes in the Young

diagram of λ with their entries in t.

Example 1.1. Suppose λ = (3, 2). The size of λ is |λ| = 5; that is, λ is a

partition of 5. The length of λ is `(λ) = 2. The Young diagram of λ is

[λ] = .

Three tableaux of shape λ with entries in [3] are depicted below.

2 1 3

1 3

2 3 3

1 1

1 1 3

3 2

Each has weight (2, 1, 2) (indicating precisely two entries of 1, one of 2 and

two of 3). Each has entry 3 in the box (1, 3).

Let YTB(λ) denote the set of tableaux of shape λ with entries in B. Let

Tbxλ(V ) be the KG-module with basis YTB(λ). There is a (non-unique)

isomorphism Tbxλ(V ) ∼= V ⊗|λ|.

If the entries of a tableau strictly increase along the rows or down the

columns, we say it is row standard or column standard respectively. The

set of column standard tableaux of shape λ with entries in B is denoted

CSYTB(λ). If the entries of a tableau weakly increase along the rows or

down the columns, we say it is row semistandard or column semistandard

respectively. The set of row semistandard tableaux of shape λ with entries

in B is denoted RSSYTB(λ).

If a tableau is both row semistandard and column semistandard, we

abbreviate this description to row-and-column semistandard.

If a tableau is both row standard and column standard, we say it is

standard. If a tableau is both row semistandard and column standard, we

say it is semistandard. The set of semistandard tableaux of shape λ with

entries in B is denoted SSYTB(λ). For this and other sets just defined, when

the set B is clear from context it is suppressed in the notation.

Example 1.2. None of the tableaux depicted in Example 1.1 are semistan-

dard: the first is neither row semistandard nor column standard; the second
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is row semistandard but not column standard; the third is column standard

but not row semistandard. A semistandard tableaux of shape λ with entries

in [3] and with weight (2, 1, 2) is depicted below.

1 1 3

2 3

1.2. Tableaux of symmetric type

We say a tableau t is of symmetric type if all entries of t are distinct. Let

Tbxλsym(V ) be the K-subspace of Tbxλ(V ) spanned by tableaux of symmetric

type. Likewise, for all constructions of spaces in this chapter, let −sym denote

the construction restricted to tableaux of symmetric type.

Note that these restricted constructions yield K-subspaces which in

general may not be KG-submodules. However, if V is a permutation KG-

module and B is a permutation basis (as is the case in our specialisation

to the symmetric group and the natural permutation module to yield the

Specht module in §4.1), then indeed they are KG-submodules.

1.3. Place permutation action on tableaux

We write elements of S[λ] on the right of their arguments. The group

S[λ] then acts on tableaux on the right by permuting the boxes via

(t · σ)(b) = t(bσ−1)

for σ ∈ S[λ] and b ∈ [λ]. This action is essential notation for defining more

complicated structures, but S[λ] should not be considered the group whose

representation theory we are interested in.

Remark 1.3. We are writing elements of S[λ] on the right of their arguments,

and a simple calculation demonstrates that the inverse is necessary in the

above definition. If we were to instead write elements of S[λ] on the left of

their arguments, then we would define the right action of S[λ] on tableaux

by (t · σ)(b) = t(σ(b)).

It is also possible to define a left place permutation action of S[λ] (and

there are two ways to denote this depending on the choice of how to write
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elements of S[λ]). We have made the choice to use a right action, in order to

distinguish the place permutation action from the left group action of G.

Example 1.4. Suppose λ = (3, 2) with Young diagram , and let t be

the semistandard tableau depicted in Example 1.2. We illustrate the action

of the permutation σ =
(

(1, 1) (2, 1) (2, 2)
)

below; colour is used to indicate

the boxes being moved.

1 1 3

2 3
·
(

(1,1)(1,1) (2,1)(2,1) (2,2)(2,2)
)

=
3 1 3

1 2

Observe that the tableau t ·σ can be found from t by moving each box b ∈ [λ]

to the place previously occupied by bσ (carrying its entry with it).

Define the sets of row-preserving and column-preserving place permuta-

tions, subgroups of S[λ], by

RPP(λ) =

λ′1∏
i=1

Srowi[λ] and CPP(λ) =

λ1∏
j=1

Scolj [λ].

Given a tableau t, let rstab(t) = stab(t) ∩ RPP(λ) and cstab(t) = stab(t) ∩
CPP(λ) denote the row stabiliser and column stabiliser of t respectively.

1.4. Row tabloids

A row tabloid is an equivalence class of tableaux under row equivalence.

Concretely, we quotient the space of tableaux Tbxλ(V ) by the subspace

JSym = 〈x · σ − x | x ∈ Tbxλ(V ), σ ∈ RPP(λ) 〉K ,

and say the row tabloid corresponding to a tableau t is the element t+ JSym

in the quotient Tbxλ(V )/JSym. We write the row tabloid corresponding to t

as [t], and draw a row tabloid [t] by deleting the vertical lines from a drawing

of t, as depicted below in the case λ = (3, 2).

t =
1 2 4

3 5
=⇒ [t] =

1 2 4

3 5

By definition, [t · σ] = [t] for any σ ∈ RPP(λ). Thus the space of row

tabloids is naturally isomorphic as a KG-module to the symmetric power
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Symλ V =
⊗λ′1

i=1 Symλi V , and we therefore use Symλ V to denote the space

of row tabloids. This space has K-basis { [t] | t ∈ RSSYT(λ) }.

1.5. Column tabloids

When defining column tabloids, we wish to also associate signs to the

equivalence classes. This is achieved by quotienting the space of tableaux

Tbxλ(V ) by the subspace

JAlt = 〈x ∈ Tbxλ(V ) | x · τ = x for some transposition τ ∈ CPP(λ) 〉K .

The (alternating) column tabloid corresponding to a tableau t is the

element t+ JAlt in the quotient Tbxλ(V )/JAlt. We write this tabloid as |t|,
and draw an alternating column tabloid by deleting the horizontal lines

from a drawing of the corresponding tableau, as depicted below in the case

λ = (3, 2).

t =
1 2 4

3 5
=⇒ |t| = 1 2 4

3 5

Observe that |t · σ| = |t| sgn(σ) for any σ ∈ CPP(λ), and furthermore

|t| = 0 if t has a repeated entry in a column. For example, with λ = (1, 1), the

elements
1
1

and
1
2

+
2
1

of TbxλV are fixed by the transposition swapping

the only two boxes, so these element lies in JAlt and hence
1
1

= 0 and

1
2

= − 2
1

. (To see that |t · σ| = |t| sgn(σ) when σ ∈ CPP(λ) is a product

of several transpositions, consider the collection of elements of the form

t ·τ1 · · · τi + t ·τ1 · · · τi−1 ∈ JAlt where τ1, τ2, . . . is a sequence of transpositions

whose product is σ.)

The space of alternating column tabloids is therefore naturally isomorphic

as a KG-module to the exterior power
∧λ′ V =

⊗λ1
i=1

∧λ′i V , and we use∧λ′ V to denote the space of alternating column tabloids. This space has

K-basis { |t| | t ∈ CSYT(λ) }.
In Chapter IV we introduce a different form of column tabloid, called a

skew column tabloid (Definition 12.1).
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1.6. Column and row ordering on tableaux

There exist many ways to order tableaux and tabloids. Here we define two

orders on tableaux which we call the column ordering and the row ordering ;

a comparison with two well-known orderings is made in Remark 1.7.

Before giving the complete definition, we note that the order is easier

to interpret in the case of tableaux of symmetric type: to compare two

distinct tableaux of symmetric type, identify the largest entry which does

not appear in the same column in both tableaux, and declare the <c-greater

tableau to be the one for which this element is further left. We illustrate the

<c-least and <c-greatest standard tableaux of symmetric type in the case

λ = (43, 2, 1) and B = [15] in Figure 1.1.

For the general definition, we require the symmetric difference operation

on multisets, which we denote 4, and the multiset difference operation,

which we denote \. For example, using double braces to denote multisets, we

have {{1, 3, 3, 4}}4 {{1, 2, 2, 3}} = {{2, 2, 3, 4}} and {{1, 3, 3, 4}} \ {{1, 2, 2, 3}} =

{{3, 4}}.

Definition 1.5. The column ordering is defined on the set of tableaux of a

fixed shape as follows. Consider tableaux t and u of shape λ.

• If there is equality colj(t) = colj(u) (as multisets) for all 1 6 j 6 λ1,

then we say t and u are column equivalent and write t ∼c u.

• Otherwise, let m ∈ B be maximal such that there exists j such that m ∈
colj(t)4 colj(u), and let j be minimal such that m ∈ colj(t)4 colj(u).

If m ∈ colj(u) \ colj(t), then we say t <c u.

The tableaux t and u are <c-incomparable if and only if t ∼c u. We write

t <c∼ u to mean t <c u or t ∼c u.

The relation <c is a strict partial order. The relation ∼c is an equivalence

relation. The relation <c∼ is a total preorder, also known as a weak order

(that is, <c∼ is a partial order with the antisymmetry requirement relaxed –

permitting t <c∼ u and u <c∼ t to hold simultaneously for distinct t and u –

and with the property that at least one of t <c∼ u and u <c∼ t holds for any

pair of tableaux t and u).
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1 6 10 13

2 7 11 14

3 8 12 15

4 9

5

(a) <c-least.

1 2 3 4

5 6 7 8

9 10 11 12

13 14

15

(b) <c-greatest.

Figure 1.1. Extremal standard tableaux of symmetric type for λ = (43, 2, 1)

and B = [15].

We make the identical definitions for the row ordering and the symbols

<r, ∼r and <r∼ , replacing all instances of “column” with “row”. For two

tableaux of symmetric type, the <r-greater tableau is the one in which the

largest entry which does not appear in the same row in both tableaux appears

further up the tableau (that is, in the numerically smaller row). Equivalently,

for tableaux t and u of shape λ, we say t <r u if and only if t′ <c u
′ (and

t ∼r u if and only if t′ ∼c u
′), where t′ and u′ are the tableaux of shape λ′

obtained from t and u by conjugation

It is clear that t ∼r u if and only if [t] = [u], and that t ∼c u implies

|t| = ±|u| (the converse also holds, provided that |t|, |u| 6= 0).

Example 1.6. The following inequalities between (semistandard) tableaux

of shape (43, 2, 1) with entries in [9] hold in the row ordering.

1 1 2 4

2 3 5 6

3 5 7 8

5 7

9

<r

1 1 2 4

2 3 5 7

3 5 7 8

5 6

9

<r

1 1 1 3

2 3 3 7

3 5 8 8

4 6

9

To see the first inequality, note that the tableaux differ only by a single

transposition, swapping a pair of boxes which contain a 6 and a 7; the

<r-greater tableau is the one in which the larger of these entries, 7, appears

higher up. For the second inequality, the critical difference between the

tableaux is that the largest entry which appears in the multiset symmetric
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difference of any row is 8, due to the contribution from the third row of the

right-hand tableau; the differences in other rows are then irrelevant, and the

right-hand tableau is <r-greater.

Remark 1.7. In the case of row semistandard tableaux of symmetric type,

our row ordering <r is the reverse of the ordering < defined by James in

[Jam78, Definition 3.1] (though ours is defined on tableaux rather than row

equivalence classes). Our column ordering <c is the column analogue of this.

On arbitrary row semistandard tableaux, the reverse of our row ordering

<r is an extension of the dominance order / defined by de Boeck, Paget and

Wildon in [dBPW21, Definition 2.7] (which is a generalisation of [Jam78,

Definition 3.11] on tabloids of symmetric type), in the sense that t . u

implies t <r u (but not conversely). The column analogue of the dominance

order, which our column ordering <c extends, is defined by James in [Jam78,

Definition 13.8] (for column equivalence classes of symmetric type).

1.7. Garnir relations

We here define Garnir relations as certain linear combinations of alternat-

ing column tabloids (that is, as certain elements of
∧λ′ V ). The motivation

for considering these relations is that they are relations obeyed (in the sense

of being sent to 0 by the appropriate quotient map) by the images of Schur

endofunctors, defined in §2.

In the context of tableaux of symmetric type, James [Jam78, Section 7]

encapsulated the same concept with Garnir elements : elements of the group

algebra KSn that annihilate the Specht modules. In that context, James’s

Garnir elements yield our notion of a Garnir relation when they act on

suitable column tabloids of symmetric type. The relations used by de Boeck,

Paget and Wildon [dBPW21, Lemma 2.4 and Equation 2.5] are images

of our Garnir relations under the map e defined in §2.2. Fulton [Ful97,

Section 8] describes a similar collection of linear combinations of alternating

column tabloids which he calls quadratic relations; these generate the same

K-subspace of
∧λ′ V as our Garnir relations.
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Definition 1.8 (Garnir relations). Let t be a tableau of shape λ with entries

in B. Let 1 6 j < j′ 6 λ1, and let A ⊆ colj(λ) and B ⊆ colj′(λ) be such that

|A|+ |B| > λ′j . Choose S = SAtB/SA×SB a set of left coset representatives

for SA × SB in SAtB. The Garnir relation labelled by (t, A,B) is

R(t,A,B) =
∑
τ∈S
|t · τ | sgn τ.

Let GRλ(V ) denote the subspace of
∧λ′ V which is spanned by the Garnir

relations.

A Garnir relation does not depend on the choice of coset representatives:

in the notation of the definition, if τ ∈ S and σ ∈ SA × SB, then because

SA × SB ⊆ CPP(λ) we have |t · τσ| sgn(τσ) = |t · τ | sgn(τ), and so replacing

τ with τσ does not change the sum.

TheK-subspace GRλ(V ) is moreover aKG-submodule. Indeed, the group

action commutes with the place permutation action, so if g ∈ G is such that

gt =
∑

u∈YT(λ) αuu for some αu ∈ K, then gR(t,A,B) =
∑

u∈YT(λ) αuR(u,A,B).

In the following lemma we make the simple observation that a Garnir

relation is zero if it involves boxes containing equal entries.

Lemma 1.9. Let A,B be sets of boxes as in Definition 1.8. Suppose t is

a tableau with an entry occurring with multiplicity greater than 1 in A tB.

Then R(t,A,B) = 0.

Proof. Let b1, b2 ∈ A t B be boxes such that t(b1) = t(b2); let τ =

(b1 b2) ∈ SAtB. Then τ acts on the left cosets of SA × SB in SAtB by

left multiplication. For the orbits of size 1, choose coset representatives

arbitrarily. For the orbits of size 2, choose a representative of one of the

cosets in each orbit arbitrarily, and let the representative of the other coset

be obtained from the first by left multiplication by τ . Let S be the set of

representatives chosen in this way.

If σ ∈ S[λ] is any permutation, then t · τσ = t · σ. In particular if

{σ, τσ} ⊆ S are the representatives of cosets in an orbit of size 2, then

|t · τσ| = |t · σ| and sgn(τσ) = − sgn(σ), and hence the contribution to the

Garnir relation R(t,A,B) from this orbit is zero.
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If σ ∈ S is the representative of a coset in an orbit of size 1, then

σ−1τσ ∈ SA × SB ⊆ CPP(λ), and so the boxes b1σ and b1τσ = b2σ lie in

the same column. But (t · σ)(b1σ) = t(b1) = t(b2) = (t · σ)(b2σ), so t · σ has

a repeated entry in a column. Thus |t · σ| = 0 and the contribution to the

Garnir relation R(t,A,B) from this orbit is zero. �

It is often the case that we need only consider Garnir relations in which

the chosen columns are adjacent and boxes are taken from the bottom of

the left-hand column and the top of the right-hand column, with a single

row containing chosen boxes from both columns. Following the terminology

introduced in [dBPW21, Equation 2.5] (but requiring also that the columns

in question be adjacent), we call such relations snake relations due to the

shape of the outline of the chosen boxes (depicted in the margin). Formally

they are as defined as follows.

j j+1

i

Definition 1.10 (Snake relations). A Garnir relation R(t,A,B) is called a

snake relation when, in the notation of Definition 1.8, j′ = j + 1 and there

exists i such that A = { (x, j) | i 6 x 6 λ′j } and B = { (x, j′) | 1 6 x 6 i }.
In this case, we may also label the Garnir relation by (t, i, j).

We define sets of relations dual to the Garnir relations in Definition 3.16.
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2. Two constructions of the Schur endofunctors

In this section we present two ways to construct the Schur endofunctors,

one as a submodule of a symmetric power and one as quotient of an exterior

power. We take the former as our definition and show that it is equivalent

to the latter, establishing a well-known basis along the way.

2.1. A submodule of a symmetric power

Our submodule will consist of the following elements of the symmetric

power.

Definition 2.1. The polytabloid corresponding to a tableau t is the element

of Symλ V given by

e(t) =
∑

σ∈CPP(λ)

[t · σ] sgnσ.

Since the action of G commutes with the place permutation action, we

can compute the action of an element g ∈ G on a polytabloid e(t) by applying

g to each entry of t, expanding multilinearly, and taking the polytabloids

corresponding to the resulting tableaux. That is, if g ∈ G is such that

gt =
∑

u∈YT(λ) αuu for some αu ∈ K, then e(t) =
∑

u∈YT(λ) αu e(u). We

illustrate this convenient way to compute the action of G on a polytabloid

with the following example.

Example 2.2. Suppose that B = {v1, v2, v3}, and as usual write i for vi in

diagrams for convenience. Suppose that g ∈ G has action on V defined by

gv1 = v1 + αv3, gv2 = v2, gv3 = βv1 + v3. Then

g e
(

1 2 2
3 3

)
= e
(

v1+αv3 v2 v2
βv1+v3 βv1+v3

)
= e
(

1 2 2
3 3

)
− β e

(
1 1 2
3 2

)
− αβ e

(
1 2 2
3 3

)
+ αβ2 e

(
1 1 2
3 2

)
where the first line is interpreted purely formally.

Note that in particular the subspace spanned by the polytabloids is a

KG-submodule of Symλ V . This allows us to make the following definition

of a Schur endofunctor as a submodule of a symmetric power.
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Definition 2.3. The Schur endofunctor labelled by λ, denoted ∇λ, is the

endofunctor on the category of KG-modules defined on a KG-module V by

∇λV = 〈 e(t) | t ∈ YT(λ) 〉K ⊆ Symλ V,

and for a map f , ∇λf is defined by applying f to each entry in a polytabloid

and expanding multilinearly.

Remark 2.4. The Schur endofunctors ∇λ are more commonly referred to

simply as the Schur functors. However, they are not related to the Schur

functor F defined in §6, and so we refer to them as the Schur endofunctors

to distinguish them from F .

Example 2.5 (Symmetric powers and exterior powers).

(i) Suppose λ = (r) consists of a single row. Then e(t) = [t] and ∇(r)V =

Symr V .

(ii) Suppose λ = (1r) consists of a single column. Then

e(t) =
∑
σ∈S[λ]

t · σ

=
∑
σ∈Sr

sgn(σ) t(1σ−1, 1)⊗ t(2σ−1, 1)⊗ · · · ⊗ t(rσ−1, 1),

and we claim that ∇(1r)V ∼=
∧r V . Indeed, the map

∇(1r)V → ∧r V∑
σ∈Sr

sgn(σ) t(1σ−1, 1)⊗ · · · ⊗ t(rσ−1, 1) 7→ t(1, 1) ∧ · · · ∧ t(r, 1)

is an isomorphism. Alternatively, in §2.2 we identify ∇λV as the

quotient
∧λ′ V/GRλ(V ) for all partitions, and plainly GR(1r)(V ) = 0.

An interesting property of the Schur endofunctors is that they are de-

termined by the images of the natural representations of the general linear

groups, in the sense of the following proposition. Recall we write ρV for the

group homomorphism G→ GLdimV (K) representing V (given some choice

of basis for V ).
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Proposition 2.6. Suppose V is d-dimensional and let E be the natural

representation of GLd(K). Then ρ∇λV = ρ∇λEρV .

Proof. Consider the action of g ∈ G on e(t) ∈ ∇λV . As illustrated in

Example 2.2, the action is given by acting by g on each entry of t – which

by definition is represented by the matrix ρ(g) ∈ GLd(K) – and expanding

multilinearly. This is precisely the action of the matrix ρ(g) on ∇λE, which

is what the proposition claims. �

It it well-known that ∇λV has basis the set of polytabloids for semistan-

dard tableaux. We see that this set is spanning in the next subsection §2.2;

we see that it is linearly independent immediately, using the row ordering

<r defined in §1.6.

Lemma 2.7. Let t be a column standard tableau. Then

e(t) = [t] +
∑
u<r t

mu[u]

for some elements mu in the subring of K generated by 1. In particular, the

set { e(s) | s ∈ SSYT(λ) } is K-linearly independent.

Proof. Since t is column standard, we have t ·σ <r∼ t for all σ ∈ CPP(λ)

with row equivalence if and only if σ = id; the claimed expression for e(t) is

then clear. The linear independence of { e(s) | s ∈ SSYT(λ) } follows: the

<r-greatest row semistandard tableau whose row tabloid appears in e(s) is,

being s itself, distinct for each s ∈ SSYT(λ). �

2.2. A quotient of an exterior power and the semistandard basis

An immediate consequence of the definition of a polytabloid is that

e(t · σ) = e(t) sgnσ for σ ∈ CPP(λ), and that e(t) = 0 if t has a repeated

entry in a column. It follows that the map e :
∧λ′ V → ∇λ(V ) defined by

K-linear extension of

e : |t| 7→ e(t)

is well-defined and surjective. It is also G-equivariant. We thus see that ∇λV
is the quotient of

∧λ′ V by the kernel of e. To make this into an explicit

model for ∇λV , we must identify the kernel of e.
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The two main aims of this subsection are to show that ker e is the

space of Garnir relations (defined in Definition 1.8) and to show that the

set of semistandard polytabloids forms a basis of ∇λV . These aims are

intertwined: we require the Garnir relations to rewrite polytabloids in terms

of semistandard ones.

We begin by showing that GRλ(V ) ⊆ ker e.

Proposition 2.8. If R(t,A,B) is any Garnir relation, then e(R(t,A,B)) = 0.

Proof. The element we are required to show is zero is

e(R(t,A,B)) =
∑

σ∈CPP(λ)

∑
τ∈SAtB/SA×SB

[t · τσ] sgn(τσ)

=
∑

σ∈SA×SB\CPP(λ)

∑
π∈SA×SB

∑
τ∈SAtB/SA×SB

[t · τπσ] sgn(τπσ)

=
∑

σ∈SA×SB\CPP(λ)

∑
τ∈SAtB

[t · τσ] sgn(τσ)

where we have first broken up the sum over CPP(λ) into sums over right cosets,

and then collected up the sums over left cosets in SAtB. From this expression

we see that it suffices to fix σ ∈ CPP(λ) and show
∑

τ∈SAtB [t ·τσ] sgn(τ) = 0.

Recall from the definition of a Garnir relation that A ⊆ colj [λ] and

B ⊆ colj′ [λ] for some 1 6 j < j′ 6 λ1, and that |A|+ |B| > λ′j . Thus by the

pigeonhole principle there exists a row containing both a box in A and a

box in B. Moreover the same claim holds if we act by σ first; that is, there

exist a ∈ A, b ∈ B and 1 6 i 6 λ′1 such that aσ = (i, j) and bσ = (i, j′). Let

ω = (a b) ∈ SAtB, and note that σ−1ωσ = (aσ bσ) ∈ RPP(λ).

Let A ⊆ SAtB be the subgroup of even permutations in SAtB; then

SAtB = A t Aω. Because σ−1ωσ ∈ RPP(λ), we have [t · τωσ] = [t ·
τσ(σ−1ωσ)] = [t · τσ]. Thus∑

τ∈SAtB

[t · τσ] sgn(τ) sgn(σ) =
∑
τ∈A

([t · τσ]− [t · τωσ]) sgn(τ) sgn(σ)

= 0

as required. �
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Remark 2.9. The manipulation of the sums in the proof of Proposition 2.8

avoids the detour into integral forms and reduction modulo p taken by the

usual proof of this fact (see for example [Jam78, Lemma 8.4] or [dBPW21,

Lemma 2.4 and Equation 2.5]).

Lemma 2.10. Let t be a column standard tableau, and suppose (i, j) is such

that t(i, j) > t(i, j + 1). Then

R(t,i,j) = |t|+
∑
u<ct

mu|u|

for some elements mu in the subring of K generated by 1.

Proof. By assumption, the sets A = { (r, j) | i 6 r 6 λ′j } and B =

{ (r, j + 1) | 1 6 r 6 i } defining the Garnir relation satisfy

t(1, j + 1) < . . . < t(i, j + 1) < t(i, j) < t(i+ 1, j) < . . . < t(λ′j , j).

(These boxes and the inequalities between their entries are illustrated in the

margin.) Thus for any σ ∈ SAtB, we have t · σ <c∼ t, with t · σ ∼c t if and

only if σ ∈ SA × SB. �

j j+1

1

i

λ′j

<
<

<

>

<
<

Lemma 2.11. Let t be any tableau. Then there exists some K-linear com-

bination γ of snake relations (with coefficients in the subring of K generated

by 1) such that

|t|+ γ =
∑

s∈SSYT(λ)

as|s|

for some elements as in the subring of K generated by 1. Consequently, the

set { e(s) | s ∈ SSYT(λ) } spans ∇λV .

Proof. Without loss of generality, we may assume t is column standard.

If t is also row semistandard, we are done. Otherwise, choose a box (i, j)

such that t(i, j) > t(i, j + 1). By Lemma 2.10, R(t,i,j) = |t| +∑u<ct
mu|u|

for some elements mu in the subring of K generated by 1. Then |t| − R(t,i,j)

is a linear combination of column tabloids whose tableaux precede t in the

column ordering. The first part of the lemma then follows by induction.
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Applying the map e to the given expression and using that GRλ(V ) ⊆
ker e shows that any polytabloid can be written as a linear combination of

semistandard polytabloids. �

We can now meet the two aims of this subsection.

Proposition 2.12. The set { e(s) | s ∈ SSYT(λ) } is a K-basis for ∇λ(V ).

Proof. The set is linearly independent by Lemma 2.7 and spanning by

Lemma 2.11. �

Proposition 2.13. There is equality ker e = GRλ(V ) and hence a KG-

isomorphism

∇λV ∼=
∧λ′ V�GRλ(V ) .

Proof. From Proposition 2.8, we have that GRλ(V ) ⊆ ker e. It therefore

suffices to show that the snake relations span ker e.

Let κ ∈ ker e. By Lemma 2.11 there exists a K-linear combination γ of

snake relations such that

κ+ γ =
∑

s∈SSYT(λ)

αs|s|

for some elements αs ∈ K. Applying e to this equation and using that

GRλ(V ) ⊆ ker e, we find

0 =
∑

s∈SSYT(λ)

αs e(s).

The semistandard polytabloids are K-linearly independent by Lemma 2.7, so

this implies that αs = 0 for all s. Hence κ = −γ is in the span of the snake

relations, as required. �

2.3. Basis for the Garnir relations

The work of the previous subsection is easily modified to identify a

basis for the space of Garnir relations (which will be essential knowledge in

Chapter IV). Our basis is the following subset of the snake relations.
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Definition 2.14 (Basic snake relations). Let Φ be a function on column

standard tableaux which are not row semistandard whose output on such

a tableau t is a box (i, j) such that t(i, j) > t(i, j + 1). A snake relation

R(t,i,j) is called Φ-basic if t is column standard but not row semistandard

and (i, j) = Φ(t).

The purpose of Φ is to associate a unique snake relation to each column

standard tableau which is not row semistandard. Any such function suffices:

except in the proofs of Propositions 13.3 and 14.12, the choice of Φ is irrelevant

(that is, all the claims, including the statements of those propositions, hold for

any choice of Φ). Accordingly, Φ is suppressed in the notation. An example

of a suitable function Φ is to let Φ(t) = (i, j) where j is least (primarily) and

i is greatest (secondarily) such that t(i, j) > t(i, j + 1); outside the specified

proofs, we may consider this to be the function in the definition of basic

snake relations.

Proposition 2.15. The set of basic snake relations is a basis for the space

GRλ(V ).

Proof. By Lemma 2.10, the basic snake relations have distinct leading

tableaux with the respect to the column ordering, and hence are linearly

independent.

It was shown in Proposition 2.13 that the snake relations span GRλ(V ).

The proof relied on Lemma 2.11, in which a choice of box (i, j) such that

t(i, j) > t(i, j + 1) was made. By letting this choice be Φ(t), all the snake

relations referred to in these proofs are basic, and so they in fact show that

the basic snake relations span GRλ(V ). �

2.4. Schur endofunctors on submodules of symmetric type

Our construction of the Specht module in §4.1 requires restriction to the

subspace of symmetric type; we record here that all the results of this section

hold upon this restriction.

Recall from §1.2 that we say a tableau is of symmetric type if all its entries

are distinct, and that for the constructions in this chapter we write −sym
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for the restriction of that construction to tableaux of symmetric type. Thus

∇λsymV is defined as the subspace of Symλ
sym V spanned by the polytabloids

of symmetric type. As noted in §1.2, however, the K-vector space ∇λsymV

may not be a KG-submodule unless V is a permutation module and B is a

permutation basis.

Proposition 2.16. There is equality ker(e|∧λ′sym V
) = GRλsym(V ) and hence

a K-linear isomorphism

∇λsymV
∼=
∧λ′

sym V�GRλsym(V ) .

Moreover, if V is a permutation KG-module and B a permutation basis, then

the above map is a KG-isomorphism.

Proposition 2.17. The basic snake relations of symmetric type form a basis

of GRλsym(V ).

Remark 2.18. Note that ∇λsym is not a functor (even on the category

of K-vector spaces): given K-vector spaces V and W and a linear map

f : V → W , the map ∇λf : ∇λV → ∇λW does not in general restrict to a

map ∇λsymV → ∇λsymW . That is, restriction to subspaces of symmetric type

is a well-defined operation on objects but not on morphisms.
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3. Duality and the Weyl endofunctors

In this section we dualise the constructions of the previous section to

obtain explicit models for the Weyl endofunctors. We first examine precisely

what we mean by duality in §3.1, and then consider the special case of the

symmetric power in §3.2. In §3.3 we define the Weyl endofunctor as the dual

of the Schur endofunctor, and hence describe it as a submodule of an exterior

power and a quotient of a (dual) symmetric power. In §3.4 we present a new

set of relations obeyed by the Weyl endofunctor.

3.1. Two notions of duality

Recall that the dual space of V is the K-vector space V ∗ = HomK(V,K).

This space becomes a representation via inversion in the group: the module

structure is given by (gf)(v) = f(g−1v) for all v ∈ V and all f ∈ HomK(V, k).

With respect to the dual basis, which we denote B∗, the representing group

homomorphism is ρV ∗(g) = ρV (g−1)
>

.

A different module structure is possible when G is a matrix group closed

under transposition. Following the notation and terminology of Green

[EGS08, p. 20], the contravariant dual of V , denoted V ◦, has the same

underlying vector space V ∗ but group action given by (gf)(v) = f(g>v) for

all v ∈ V and all f ∈ HomK(V,K). With respect to the dual basis, the

representing group homomorphism is ρV ◦(g) = ρV (g>)
>

.

Remark 3.1. We discuss the concept of polynomial representations in §5.

We will see (Proposition 5.6(iv)) that contravariant duality preserves the

property of being polynomial (and furthermore preserves the degree), but

that (usual) duality does not.

When G = SL2(K), the two notions of duality coincide, as the following

proposition shows.

Proposition 3.2. Suppose G = SL2(K). Then V ∗ ∼= V ◦.
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Proof. Let J =
(

0 1
−1 0

)
∈ SL2(K). It is simple to verify that for any

matrix g ∈ SL2(K), we have Jg−1J−1 = g>. Then R = ρV (J−1)> satisfies

RρV ∗(g)R−1 = RρV (g−1)>R−1

=
(
ρV (J)ρV (g−1)ρV (J−1)

)>
= ρV (g>)>

= ρV ◦(g),

and the proposition follows. �

The interactions between these dualities and symmetric powers is explored

further in §3.2. The case of exterior powers is more straight-forward: exterior

powers commute with duals, via the obvious map.

Proposition 3.3. Suppose B = {v1, . . . , vd} is the chosen basis for V and

B∗ = {v∗1, . . . , v∗d} is the dual basis for V ∗. Let { (vi1 ∧ · · · ∧ vir)∗ | 1 6 i1 <

. . . < ir 6 d } be the basis for (
∧r V )∗ dual to the basis { vi1 ∧ · · · ∧ vir | 1 6

i1 < . . . < ir 6 d } for
∧r V . Then there is a KG-isomorphism

(
∧r V )∗ ∼=

∧r V ∗

(vi1 ∧ · · · ∧ vir)∗ 7→ v∗i1 ∧ · · · ∧ v∗ir .

If G is a matrix group closed under transposition, the same map defines a

KG-isomorphism when −∗ is replaced with the contravariant dual −◦.

Proof. Clearly the map is a K-linear bijection. Let ρV be the homo-

morphism representing the action on V with respect to the given basis, and

likewise for the other relevant modules. Let g ∈ G. Observe that

g(vi1 ∧ · · · ∧ vir) =
( d∑
j=1

ρV (g)j,i1vj

)
∧ · · · ∧

( d∑
j=1

ρV (g)j,irvj

)
=

∑
(j1,...,jr)∈[d]r

ρV (g)j1,i1 · · · ρV (g)jr,ir vj1 ∧ · · · ∧ vjr

=
∑
σ∈Sr

sgn(σ)
∑

16j1<...<jr6d

ρV (g)j1σ ,i1 · · · ρV (g)jrσ ,ir vj1 ∧ · · · ∧ vjr .
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Thus for 1 6 i1 < . . . < ir 6 d and 1 6 j1 < . . . < jr 6 d we have

ρ∧r V (g)(j1,...,jr),(i1,...,ir) =
∑
σ∈Sr

sgn(σ)ρV (g)j1σ ,i1 · · · ρV (g)jrσ ,ir .

This allows us to deduce the action of g on the two modules of interest: on

(
∧r V )∗ it is given by

ρ(∧r V )∗(g)(j1,...,jr),(i1,...,ir) = ρ∧r V (g−1)(i1,...,ir),(j1,...,jr)

=
∑
σ∈Sr

sgn(σ)ρV (g−1)i1σ ,j1 · · · ρV (g−1)irσ ,jr

while on
∧r V ∗ it is given by

ρ∧r V ∗(g)(j1,...,jr),(i1,...,ir) =
∑
σ∈Sr

sgn(σ)ρV ∗(g)j1σ ,i1 · · · ρV ∗(g)jrσ ,ir

=
∑
σ∈Sr

sgn(σ)ρV (g−1)i1,j1σ · · · ρV (g−1)ir,jrσ .

Using that Mi1,j1σ . . .Mir,jrσ = Mi1σ−1 ,j1 . . .Mirσ−1 ,jr for a matrix M and

reindexing the sum by replacing σ with σ−1 shows that the two matrices

ρ(∧r V )∗(g) and ρ∧r V ∗(g) are equal, as required.

To show that ρ(∧r V )◦(g) and ρ∧r V ◦(g) are equal, we use the same

argument with g> occurring in place of g−1. �

3.2. Duality and symmetric powers

In this subsection, we define functors dual to the symmetric powers, which

we call lower symmetric powers (calling the true symmetric powers upper

symmetric powers). (The lower symmetric powers are sometimes known as

divided powers, being grades of the divided power algebra.) These functors

are important in their own right, featuring prominently in Chapter III where

the duality is necessary to generalise certain classical results. The lower

symmetric powers are also useful for constructing and studying the Weyl

endofunctors. Indeed, whereas in §2 we showed that the Schur endofunctors

can be viewed both as submodules of upper symmetric powers and as quotients

of exterior powers, we will show later that the Weyl endofunctors can be

viewed both as submodules of exterior powers and as quotients of lower

symmetric powers. We will see also that the lower symmetric powers are
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in fact a particular case of the Weyl endofunctors (those labelled by rows);

nevertheless it is helpful to define the lower symmetric powers explicitly

before studying the Weyl endofunctors.

Recall that the upper symmetric power is defined as a quotient of the

tensor power. More concretely, letting the symmetric groups act on pure

tensors on the right by place permutation, we have

Symr V = V ⊗r�〈x− x · σ | x ∈ V ⊗r is a pure tensor, σ ∈ Sr 〉K .
By contrast, the lower symmetric power is defined as a submodule of the

tensor power.

Definition 3.4 (Lower symmetric powers). The rth lower symmetric power

of V is Symr V = (V ⊗r)Sr the space of invariants of the place permutation

action of Sr on V ⊗r. That is, it is the subspace of symmetric tensors

Symr V =

〈 ∑
σ∈stabx\Sr

x · σ

∣∣∣∣∣∣x ∈ V ⊗r is a pure tensor

〉
K

⊆ V ⊗r.

where stabx 6 Sr denotes the stabiliser of the place permutation action on

a pure tensor x.

It is clear that Symr V is a KG-module: since the group action and the

place permutation action commute, if x ∈ V ⊗r is such that x · σ = x for all

σ ∈ Sr, then this is also true for gx.

Writing B = {v1, . . . , vd} for the basis of V , a basis for Symr V is ∑
σ∈stab(i1,...,ir)\Sr

vi1σ−1 ⊗ · · · ⊗ virσ−1

∣∣∣∣∣∣ 1 6 i1 6 . . . 6 ir 6 d
 .

Proposition 3.5. If charK = 0 or charK > r, then Symr V and Symr V

are isomorphic.

Proof. This is easily verified using the restriction to Symr V of the

canonical surjection V ⊗r � Symr V : this map sends∑
τ∈stab(i1,...,ir)\Sr

vi1τ−1 ⊗ · · · ⊗ virτ−1 7→ |Sr : stab(i1, . . . , ir)| vi1 · . . . · vir ,
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and so is an isomorphism when these coefficients are nonzero. �

Further to Proposition 3.5, we show in Proposition 11.12 (using the

invariant introduced in that section) that if K has characteristic p, then a

necessary and sufficient condition for the two powers to be isomorphic is that

r < p or r = pε − 1 for some integer ε. Proposition 3.5 can also be seen as a

special case of the isomorphism noted in Remark 3.14.

Remark 3.6. We could analogously construct the lower exterior power as

the submodule
∧
r V ⊆ V ⊗r consisting of antisymmetrisations of tensors.

However, this is isomorphic to the usual exterior power: the antisymmetrisa-

tion of a pure tensor is equal to a signed sum over all permutations (if its

stabiliser is nontrivial the antisymmetrisation is 0), and thus the map∧
r V →

∧r V∑
σ∈Sr

sgn(σ)vi1σ−1 ⊗ · · · ⊗ virσ−1 7→ vi1 ∧ · · · ∧ vir

is an isomorphism (regardless of the characteristic).

Although not always isomorphic, the lower symmetric powers and the

upper symmetric powers are always dual, in the following sense.

Proposition 3.7 (cf. Proposition 3.3). Suppose B = {v1, . . . , vd} is the

chosen basis for V and B∗ = {v∗1, . . . , v∗d} is the dual basis for V ∗. Let

{ (vi1 · . . . · vir)∗ | 1 6 i1 6 . . . 6 ir 6 d } be the basis for (Symr V )∗ dual

to the basis { vi1 · . . . · vir | 1 6 i1 6 . . . 6 ir 6 d } for Symr V . There is a

KG-isomorphism

(Symr V )∗ ∼= Symr V
∗

(vi1 · . . . · vir)∗ 7→
∑

σ∈stab(i1,...,ir)\Sr

v∗i1σ−1 ⊗ · · · ⊗ v∗irσ−1 .

If G is a matrix group closed under transposition, the same map defines a

KG-isomorphism when −∗ is replaced with the contravariant dual −◦.

Proof. Clearly the map is a K-linear bijection. Let ρV be the homo-

morphism representing the action on V with respect to the given basis, and
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likewise for the other relevant modules. Let g ∈ G. Observe that the action

of g on the tensor power is given by

g(vi1 ⊗ · · · ⊗ vir)

=
( d∑
j=1

ρV (g)j,i1vj

)
⊗ · · · ⊗

( d∑
j=1

ρV (g)j,irvj

)
=

∑
(j1,...,jr)∈[d]r

ρV (g)j1,i1 · · · ρV (g)jr,ir vj1 ⊗ · · · ⊗ vjr

=
∑

16j16...6jr6d

∑
σ∈Sj1,...,jr

ρV (g)j1σ−1 ,i1 · · · ρV (g)jrσ−1 ,irvj1σ−1 ⊗ · · · ⊗ vjrσ−1

where Sj1,...,jr = stab(j1, . . . , jr)\Sr. Then the action of g on the symmetric

powers is given by

g(vi1 · . . . · vir) =
∑

16j16...6jr6d

∑
σ∈Sj1,...,jr

ρV (g)j1σ−1 ,i1 · · · ρV (g)jrσ−1 ,ir vj1 · . . . · vjr

and

g
( ∑
τ∈Si1,...,ir

vi1τ−1 ⊗ · · · ⊗ virτ−1
)

=
∑

τ∈Si1,...,ir

∑
16j16...6jr6d

ρV (g)j1,i1τ−1 · · · ρV (g)jr,irτ−1
∑

σ∈Sj1,...,jr

vj1σ−1 ⊗ · · · ⊗ vjrσ−1 ,

where we have used that since Symr V is a submodule, the coefficient of

vj1σ−1 ⊗ · · · ⊗ vjrσ−1 does not depend on the permutation σ. Thus for 1 6

i1 6 . . . 6 ir 6 d and 1 6 j1 6 . . . 6 jr 6 d we have

ρSymr V (g)(j1,...,jr),(i1,...,ir) =
∑

σ∈Sj1,...,jr

ρV (g)j1σ−1 ,i1 · · · ρV (g)jrσ−1 ,ir ,

ρSymr V (g)(j1,...,jr),(i1,...,ir) =
∑

σ∈Si1,...,ir

ρV (g)j1,i1σ−1 · · · ρV (g)jr,irσ−1 .

This allows us to deduce the action of g on the two modules of interest:

on (Symr V )∗ it is given by

ρ(Symr V )∗(g)(j1,...,jr),(i1,...,ir) = ρSymr V (g−1)(i1,...,ir),(j1,...,jr)

=
∑

σ∈Si1,...,ir

ρV (g−1)i1σ−1 ,j1 · · · ρV (g−1)irσ−1 ,jr
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while on Symr V
∗ it is given by

ρSymr V
∗(g)(j1,...,jr),(i1,...,ir) =

∑
σ∈Si1,...,ir

ρV ∗(g)j1,i1σ−1 · · · ρV ∗(g)jr,irσ−1

=
∑

σ∈Si1,...,ir

ρV (g−1)i1σ−1 ,j1 · · · ρV (g−1)irσ−1 ,jr .

Thus these two matrices ρ(Symr V )∗(g) and ρSymr V
∗(g) are equal, as required.

To show that ρ(Symr V )◦(g) and ρSymr V
◦(g) are equal, we use the same

argument with g> occurring in place of g−1. �

As with the upper symmetric powers, we write Symλ V =
⊗λ′1

i=1 Symλi V ,

and can model this space using a tabular construction.

Definition 3.8. Let t be a tableau. Define the row symmetrisation of t to

be the element of Tbxλ(V ) given by

rsym(t) =
∑

τ∈rstab(t)\RPP(λ)

t · τ .

The subspace of Tbxλ(V ) spanned by the row symmetrisations is iso-

morphic as a KG-module to Symλ V . Moreover, the set { rsym(t) | t ∈
RSSYT(λ) } is a basis for Symλ V .

3.3. Weyl endofunctors

We define the Weyl endofunctors ∆λ as the duals of the Schur endofunc-

tors ∇λ, in the sense given in the definition below. As a consequence, we will

see that the Weyl endofunctors can be viewed as either submodules of exte-

rior powers or quotients of lower symmetric powers. Taking the submodule

viewpoint, we give an explicit basis consisting of copolytabloids, generalising

the result given by [Wil20] in the case when K is infinite and G = GL(V ).

Taking the quotient viewpoint, in §3.4 we describe the kernel as consisting

of row Garnir relations, a new description of this module.

Definition 3.9. The Weyl endofunctor labelled by λ, denoted ∆λ, is the

endofunctor on the category of KG-modules obtained by pre- and post-

composing the Schur endofunctor with the duality functor −∗. That is, it is
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defined on a KG-module V by

∆λV = (∇λV ∗)∗

and on a map f , by ∆λf = (∇λf∗)∗.

The Weyl endofunctors are determined by the natural representations, in

the same sense as for the Schur endofunctors (Proposition 2.6). Examining

the representing homomorphism also demonstrates that, if G is a matrix

group closed under transposition, the definition of the Weyl endofunctor ∆λ

can use the contravariant dual −◦ in place of −∗.

Proposition 3.10.

(i) Suppose V is d-dimensional and let E be the natural representation of

GLd(K). Then ρ∆λV = ρ∆λEρV .

(ii) Suppose G is a matrix group closed under transposition. Then ∆λV ∼=
(∇λV ◦)◦.

Proof. By definition of ∆λV , the representing homomorphism satisfies

ρ∆λV (g) = ρ(∇λV ∗)∗(g) = ρ∇λV ∗(g
−1)>.

But ρ∇λV ∗ = ρ∇λEρV ∗ by Proposition 2.6, so this becomes

(3.10.1) ρ∆λV (g) =
(
ρ∇λEρV ∗(g

−1)
)>

=
(
ρ∇λE(ρV (g)>)

)>
.

In particular, by setting V = E we find that ρ∆λE(M) =
(
ρ∇λE(M>)

)>
for

all M ∈ GLd(K). Choosing M = ρV (g) we obtain ρ∆λV (g) = ρ∆λEρV (g),

demonstrating (i).

Calculations analogous to the above, but with g> appearing in place

of g−1, show that ρ(∇λV ◦)◦(g) =
(
ρ∇λE(ρV (g)>)

)>
. This is precisely the

expression found for ρ∆λV (g) in (3.10.1), proving (ii). �

Since ∇λV ∗ is a submodule of the upper symmetric power Symλ V ∗,

using Proposition 3.7 we see that ∆λV is a quotient of the lower symmetric

power Symλ V . Likewise since ∇λV ∗ is a quotient of the exterior power∧λ′ V ∗, using Proposition 3.3 we see that ∆λV is a submodule of the exterior

power
∧λ′ V . In the remainder of this section we find an explicit basis for

this submodule of
∧λ′ V .
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Definition 3.11. Let t be a tableau. The copolytabloid of t is the element

of
∧λ′ V given by1

e(t) =
∑

τ∈rstab(t)\RPP(λ)

|t · τ |.

In Proposition 3.13 we show that ∆λV is precisely the subspace of∧λ′ V spanned by the copolytabloids. Unlike the case of polytabloids, it

is not immediately obvious from direct computation that the subspace of

copolytabloids is a KG-submodule: the row stabiliser of a tableau in the

image gt may differ from that of t, so it is not sufficient to observe that

the group action commutes with the place permutation action. However,

the copolytabloid of t is the image of rsym(t) under the canonical map

Λ : Tbxλ(V )→ ∧λ′ V , so the space of copolytabloids is the image of Symλ V

under a G-equivariant map and hence a KG-module.

We first make the obvious dualisation of Lemma 2.7. We use the column

ordering <c defined in §1.6.

Lemma 3.12. Let t be a row semistandard tableau. Then

e(t) = |t|+
∑
u<c t

mu|u|

for some elements mu in the subring of K generated by 1. In particular, the

set { e(s) | s ∈ SSYT(λ) } is K-linearly independent.

Proof. By definition, e(t) =
∑

τ∈rstab(t)\RPP(λ) |t · τ |. Since t is row

semistandard, t · τ <c∼ t for all τ ∈ RPP(λ), with equality if and only

if τ ∈ rstab(t); the claimed expression for e(t) is then clear. The linear

independence of { e(s) | s ∈ SSYT(λ) } follows: the <c-greatest column

standard tableau whose column tabloid appears in e(s) is, being s itself,

distinct for each s ∈ SSYT(λ). �

The key step of the next proposition is showing that copolytabloids are

contained in ∆λV . A special case of this argument, for the tableau t defined

by t(i, j) = i, is given by Wildon [Wil20, §3.2].

1The symbol eis a schwa; it is a rotation of the Roman e.
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Proposition 3.13. The submodule of
∧λ′ V spanned by the copolytabloids

is isomorphic to ∆λV , and has K-basis { e(s) | s ∈ SSYT(λ) }.

Proof. It suffices to show that ∆λV is isomorphic to a submodule of∧λ′ V containing the copolytabloids, for then the set { e(s) | s ∈ SSYT(λ) }
is a linearly independent set contained in a module of dimension dim ∆λV =

dim∇λV = |SSYT(λ)|, and hence the set is a basis.

We view (∇λV ∗)∗ as a submodule of (
∧λ′ V ∗)∗ via the dual to the surjec-

tive map e :
∧λ′ V ∗ → ∇λV ∗; that is, by the injective map e∗ : (∇λV ∗)∗ →

(
∧λ′ V ∗)∗ defined by e∗(θ)(x) = θ(e(x)) for θ ∈ (∇λV ∗)∗ and x ∈ ∧λ′ V ∗.

Meanwhile we view (
∧λ′ V ∗)∗ as isomorphic to

∧λ′ V via the isomorphism

from Proposition 3.3 (defined on each tensor factor, with V ∗ in place of V ),

which we denote ψ. Since by definition ∆λV ∼= (∇λV ∗)∗, our objective, then,

is to show that the copolytabloids lie in the image of ψe∗. Since e(t) = e(u)

if t and u are row-equivalent tableaux, it suffices to show that copolytabloids

of row semistandard tableaux are contained in this image.

Fix t ∈ RSSYTB(λ). Let t∗ denote the tableau obtained from t by replac-

ing each entry from B with its dual from B∗. Let [t∗]∗ denote the element

dual to [t∗] in the basis of (Symλ V ∗)∗ dual to { [s] | s ∈ RSSYTB∗(λ) }.
Since ∇λV ∗ ⊆ Symλ V ∗, we can restrict the function [t∗]∗ to the subspace

∇λV ∗, thus obtaining an element of (∇λV ∗)∗.
To view [t∗]∗ as an element of (

∧λ′ V ∗)∗, we compute e∗([t∗]∗). For any

u ∈ CSYTB∗(λ) we have

e∗([t∗]∗)(|u|) = [t∗]∗(e(u))

= [t∗]∗
∑

σ∈CPP(λ)

sgn(σ)[u · σ]

=
∑

σ∈CPP(λ)

sgn(σ)1[[u · σ] = [t∗]]

=
∑

τ∈rstab(t∗)\RPP(λ)

∑
σ∈CPP(λ)

sgn(σ)1[t∗ · τ = u · σ]

where the last equality holds because there is at most one element τ ∈
rstab(t∗)\RPP(λ) such that t∗ · τ = u · σ, and such an element exists if and
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only if t∗ and u · σ have the same multisets of entries in each row (that is,

if and only if [t∗] = [u · σ]).

We employ a similar argument to collapse the sum over CPP(λ). Since u

is column standard and hence has distinct entries within a column, there is at

most one element σ ∈ CPP(λ) such that t∗ ·τ = u ·σ, and such an element ex-

ists if and only if t∗ ·τ and u have the same multisets of entries in each column.

Write s� for the unique column semistandard tableau obtained from a tableau

s by sorting all the columns into ascending order; thus t∗ · τ and u have the

same multisets of entries if and only if (t∗ · τ)� = u. Defining sgn(s 7→ s�)

to be the sign of the unique column-preserving permutation which makes

s into a column standard tableau (if it exists; defining sgn(s 7→ s�) = 0 if

s does not have distinct column entries), the expression above becomes

e∗([t∗]∗)(|u|) =
∑

τ∈rstab(t∗)\RPP(λ)

1[(t∗ · τ)� = u] sgn(t∗ · τ 7→ (t∗ · τ)�).

Thus we have

e∗([t∗]∗) =
∑

τ∈rstab(t∗)\RPP(λ)

|(t∗ · τ)�|∗ sgn(t∗ · τ 7→ (t∗ · τ)�),

where for a column standard tableau u, we denote by |u|∗ the element dual

to |u| in the basis of (
∧λ′ V ∗)∗ dual to { |s| | s ∈ CSYTB∗(λ) }. Applying

ψ we find that

ψ(e∗([t∗]∗)) =
∑

τ∈rstab(t)\RPP(λ)

|(t · τ)�| sgn(t · τ 7→ (t · τ)�)

=
∑

τ∈rstab(t)\RPP(λ)

|t · τ |

= e(t),

so e(t) is in the image ψ((∇λV ∗)∗) as required. �

Note that the map in Proposition 3.13 does not send e(t∗)∗, the element

dual to a polytabloid, to the copolytabloid e(t). Furthermore, it is not the

case that the basis { e(s) | s ∈ SSYTB(λ) } is dual to the basis { e(s) | s ∈
SSYTB∗(λ) }. The change of basis matrix between these is given by the

Désarménien matrix [EGS08, §5.3].
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Remark 3.14. Let t be the tableau defined by t(i, j) = i, and note that

the row symmetrisation of t is rsym(t) = t, and so e(t) = |t|. Suppose K is

infinite.

(i) Suppose V = E is the natural representation of GLn(K). It can

be shown that the copolytabloid e(t) generates ∆λE [EGS08, (5.3b)]. The

element e(t) is a weight vector in the sense described in §6.1 (and in the sense

described for SL2(K) in §11.1), and moreover is a unique highest weight

vector in a suitable sense. That is, ∆λE is generated by its unique highest

weight vector e(t).

(ii) There is a natural map ∆λV → ∇λV obtained by viewing ∆λV as

a submodule of
∧λ′ V and applying the map e :

∧λ′ V → ∇λV . This map

is nonzero: on the copolytabloid e(t) = |t| it has image e(t) 6= 0 in ∇λV .

If either charK = 0 or charK > |λ|, this map is an isomorphism. As the

Schur and Weyl endofunctors are determined by the natural representations

(Propositions 2.6 and 3.10), it suffices to show this in the case V = E the

natural representation of GLn(K). By Schur’s Lemma, it suffices to know

that ∆λE and ∇λE are both simple under the given conditions on K; this

follows from the semisimplicity of the Schur algebra [EGS08, (2.6e)].

In general this map ∆λV → ∇λV is not an isomorphism. In the case

V = E the natural representation of GLn(K), we have that e(t) generates

∆λE as remarked above, and furthermore e(t) generates the unique nonzero

minimal submodule of ∇λE which is isomorphic to the simple head of ∆λE

[EGS08, (5.4c), (5.4d)]. It follows that the map has image the unique nonzero

minimal submodule of∇λE and kernel the unique proper maximal submodule

of ∆λE.

Example 3.15 (Lower symmetric powers; exterior powers).

(i) Suppose λ = (n) consists of a single row. Then ∆(n)V ∼= Symn V

because ∇(n)V = Symn V and using Proposition 3.7. Also, e(t) =

rsym(t).

(ii) Suppose λ = (1n) consists of a single column. Then ∆(1n)V ∼=
∧n V

because ∇(1n)V ∼=
∧n V and using Proposition 3.3. Also, e(t) = |t|.
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3.4. Row Garnir relations

In this subsection we identify the kernel of the map Λ : Symλ V � ∆λV ,

thus obtaining a concrete model of ∆λV as a quotient of the lower symmetric

power. The method is analogous to the treatment of the Schur endofunctor

in §2.2, but is complicated by the consideration of stabiliser sizes. Our

description of the kernel as consisting of the row Garnir relations below is

new.

Definition 3.16 (Row Garnir relations). Let t be a tableau of shape λ with

entries in B. Let 1 6 i < i′ 6 λ′1, and let A ⊆ rowi(λ) and B ⊆ rowi′(λ)

be such that |A| + |B| > λi. Let T = { t · τ | τ ∈ SAtB } be the set (not

multiset) of tableaux which can be obtained from t by permuting boxes in

A t B. Let T /∼r denote the set of equivalence classes of tableaux in T
modulo row equivalence. The row Garnir relation labelled by (t, A,B) is the

element of Symλ V given by

R
(t,A,B) =

∑
u∈T /∼r

∣∣rstab(u) : rstab(u) ∩ (SAtB × S[λ]\AtB)
∣∣ rsym(u).

Let G

Rλ(V ) denote the subspace of Symλ V which is spanned by the row

Garnir relations.

A row Garnir relation does not depend on the choice of equivalence

class representatives: in the notation of the definition, if u, u′ ∈ T are such

that u ∼r u
′, then clearly rsym(u) = rsym(u′); furthermore there exists

σ ∈ RPP(λ) ∩ (SAtB × S[λ]\AtB) such that uσ = u′ and hence rstab(u) =

σ rstab(u′)σ−1, and so the index of rstab(u)∩ (SAtB × S[λ]\AtB) in rstab(u)

is unchanged if u is replaced with u′. The representatives must indeed be

chosen from T , however: if s 6∈ T , then u ∼r s does not imply that the

relevant indices are equal.

It is not immediately clear that the K-subspace G

Rλ(V ) is a KG-

submodule. We do not show this fact directly, but instead deduce it after we

have shown G

Rλ(V ) = ker Λ.

A row Garnir relation can also be expressed as a sum over double cosets.

This expression, given in Lemma 3.17 below, is helpful for proving that the
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row Garnir relations lie in the kernel of Λ (Proposition 3.21), but may be

more cumbersome for explicit calculations.

Lemma 3.17. Let

R

(t,A,B) be any row Garnir relation. Let S = stab(t) ∩
SAtB\SAtB/SA × SB be a set of double coset representatives for stab(t) ∩
SAtB on the left and SA × SB on the right in SAtB. Then

R

(t,A,B) =
∑
τ∈S

∣∣rstab(t · τ) : rstab(t · τ) ∩ (SAtB × S[λ]\AtB)
∣∣ rsym(t · τ).

Proof. Both the definition of

R

(t,A,B) and the expression in the state-

ment above can be viewed as sums over SAtB modulo certain equivalence

relations: in the definition, by equality in T and row equivalence; in the

claim, by left multiplication by stab(t) ∩ SAtB and right multiplication by

SA × SB. Reducing modulo left multiplication by stab(t) ∩ SAtB precisely

corresponds to reduction modulo equality in T : given τ, τ ′ ∈ SAtB, we have

that t · τ = t · τ ′ if and only if τ−1τ ′ ∈ stab(t) ∩ SAtB. Reduction modulo

right multiplication by SA × SB precisely corresponds to the reduction mod-

ulo row equivalence in T : given u, u′ ∈ T , we have u ∼r u
′ if and only if

there exists σ ∈ SA × SB such that u · σ = u′ (where we have used that

RPP(λ) ∩ SAtB = SA × SB). �

We illustrate the definition of a row Garnir relation with an example.

This example also demonstrates why it is the right definition to make.

Example 3.18. Suppose λ = (2, 2), B = [2], and t =
1 1
2 2

. Let A =

{(1, 1), (1, 2)} and B = {(2, 1)} (these sets of boxes are indicated in the

margin).

A A

B

There are three distinct tableaux obtained by the action of SAtB on t:

1 1

2 2
,

2 1

1 2
,

1 2

1 2
.

The latter two are row equivalent, so a set of representatives is T /∼r ={
1 1
2 2

,
2 1
1 2

}
. The second tableau has trivial row stabiliser. The first

tableau, t itself, has row stabiliser Srow1[λ]×Srow2[λ], of size 4, whose intersec-

tion with SAtB ×S[λ]\AtB is Srow1[λ], of size 2. Thus the row Garnir relation
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is

R

(t,A,B) = 2 rsym
( 1 1

2 2

)
+ rsym

( 2 1
1 2

)
= 2

1 1
2 2

+
2 1
1 2

+
1 2
1 2

+
2 1
2 1

+
1 2
2 1

.

Alternatively we can use the expression from Lemma 3.17. The group

SAtB is isomorphic as an abstract group to S3, and is generated by the

transpositions τ =
(
(1, 1) (2, 1)

)
and ω =

(
(1, 1) (1, 2)

)
(these permutations

are depicted in the margin). Note that stab(t) ∩ SAtB = SA × SB, and

ω is the unique nontrivial element of this subgroup. Thus there are only

two double cosets, {id, ω} and {τ, τω, ωτ, ωτω}, and a choice of double coset

representatives is

stab(t) ∩ SAtB\SAtB/SA × SB = {id, τ}.

The set {t, t·τ} obtained from the action of these double coset representatives

is precisely the above choice of representatives for T /∼r, and thus we obtain
R

(t,A,B) as above.

ω

τ

Observe that the image of

R

(t,A,B) under the map Λ : Tbxλ(V )�
∧λ′ V

is

Λ(

R

(t,A,B)) = 2 e(t) + e(t · τ)

= 2
1 1
2 2

+
2 1
1 2

+
1 2
2 1

= 0,

as the upcoming Proposition 3.21 claims. This allows us to rewrite the non-

semistandard copolytabloid e( 2 1
1 2

)
in terms of semistandard copolytabloids

(as described in general in the upcoming Lemma 3.24).

We now use this example to demonstrate why our definition of the row

Garnir relations is the correct definite to make.

The obvious candidate for a simpler definition is in direct analogy with the

usual Garnir relations: define

R∗
(t,A,B) as a sum over left coset representatives

of SA×SB in SAtB, without any coefficients appearing in the sum. A choice

of coset representatives is SAtB/SA × SB = {id, τ, ωτ}. In our example we
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have

R∗
(t,A,B) = rsym

(
1 1
2 2

)
+ 2 rsym

(
2 1
1 2

)
=

1 1
2 2

+ 2
2 1
1 2

+ 2
1 2
1 2

+ 2
2 1
2 1

+ 2
1 2
2 1

whose image under Λ is

Λ(

R∗
(t,A,B)) = e

(
1 1
2 2

)
+ 2 e

(
2 1
1 2

)
=

1 1
2 2

+ 2
2 1
1 2

+ 2
1 2
2 1

= −3
1 1
2 2

which is nonzero (in characteristics other than 3). Similarly it can be shown

that summing over the entire group SAtB also fails to yield an element of

the kernel (in this example we would obtain twice the quantity above).

An alternative definition that does yield elements of the kernel is to, as

above, sum over left coset representatives of SA × SB in SAtB (without any

additional coefficients), but replace the row symmetrisation with a sum over

the entire group of row preserving permutations. Define

R∗∗
(t,A,B) =

∑
τ∈SAtB/SA×SB

∑
σ∈RPP(λ)

t · τσ.

It can be shown, analogously to the proof of Proposition 2.8, that these

elements lie in the kernel of Λ; this proof is much simpler than that of

Proposition 3.21 because the sums over the row permutations do not depend

on the tableaux to which they are being applied. However, in general these

elements have scalar factors, and hence cannot be used in a straightening

algorithm (as described in Lemma 3.24) to express a copolytabloid in terms

of semistandard copolytabloids. In our example, we have

R∗∗
(t,A,B) =

∑
σ∈RPP(λ)

1 1
2 2
· σ + 2

∑
σ∈RPP(λ)

2 1
1 2
· σ

= 4
1 1
2 2

+ 2
2 1
1 2

+ 2
1 2
1 2

+ 2
2 1
2 1

+ 2
1 2
2 1

= 2

R

(t,A,B) .
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Remark 3.19. If t is of symmetric type, then a row Garnir relation labelled

by t is simpler to write down: the row stabiliser of any place permutation

of t is trivial, so all the coefficients in the expression are 1, and the row

symmetrisations are sums over the entire group of row preserving permu-

tations. Additionally, the proof of the upcoming Proposition 3.21 is much

easier (as noted in Example 3.18). In this case, when G = Sr and V = W

the natural permutation representation, the row Garnir relations become

well-known relations for the dual Specht module (Sλ)∗ [Ful97, Exercise 14,

p. 101]. Similar relations hold working in the cellular basis of the dual Specht

module for the Hecke algebra [Mat99, §3.2].

We now show that the row Garnir relations lie in the kernel of Λ. The

strategy is to rewrite the double coset expression for

R

(t,A,B) to remove the

dependence between the sums, and then argue as in the proof of Propo-

sition 2.8. To this end, we first record some expressions for sets of coset

representatives.

Lemma 3.20. Let Γ be any group, and let I, J and L be subgroups of

Γ. Denote compontentwise multiplication of sets by concatenation. The

following equalities hold, interpreted as statements about choices of coset

representatives.

(i) I
∖

Γ =
⊔
g∈I\Γ/J

⊔
h∈(Ig∩J)\J{gh}.

(ii) (L ∩ I×J)
∖

Γ =
(
L ∩ I×J

∖
I×J

)(
I×J

∖
Γ
)
.

(iii) (L ∩ I×J)
∖

Γ =
(
L ∩ I×J

∖
L ∩ Γ

)(
L ∩ Γ

∖
Γ
)
.

(iv) (L∩ I×J)
∖
I×J=

(
L∩ I

∖
I
)(
L∩ J

∖
J
)

if I and J commute and are

disjoint.

Proof. All the statements are routine exercises in bookkeeping. �

Proposition 3.21 (cf. Proposition 2.8). If

R

(t,A,B) is any row Garnir rela-

tion, then Λ(

R

(t,A,B)) = 0.

Proof. For convenience, we introduce some abbreviations: H = stab t,

C = AtB and Z = [λ]\AtB, and for D ⊆ [λ] we write RD = RPP(λ)∩SD
(and hence R[λ] = RPP(λ)). We then have, for τ ∈ S[λ], that stab(t · τ) =
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Hτ = τ−1Hτ , that rstab(t · τ) = Hτ ∩R[λ], that rstab(t · τ)∩ (SC ×S[λ]\C) =

Hτ ∩ (RC × RZ), and that RC = SA × SB.

For each τ ∈ S[λ], we use Lemma 3.20(iii) with Γ = R[λ], L = Hτ , I = RC ,

J = RZ to find that∑
π∈Hτ∩(RC×RZ)\R[λ]

|t · τπ| =
∑

ϕ∈Hτ∩(RC×RZ)\Hτ∩R[λ]

∑
σ∈Hτ∩R[λ]\R[λ]

|t · τϕσ|

=
∣∣Hτ ∩ R[λ] : Hτ ∩ RC×RZ

∣∣ ∑
σ∈Hτ∩R[λ]\R[λ]

|t · τσ|

=
∣∣Hτ ∩ R[λ] : Hτ ∩ RC×RZ

∣∣Λ(rsym(t · τ))

where we have used that elements of Hτ ∩ R[λ] fix t · τ . Note the index is

precisely the index occurring in the definition of the row Garnir relations.

Therefore the element we are required to show is zero is

Λ(

R

(t,A,B)) =
∑

τ∈H∩SC\SC/RC

∑
π∈Hτ∩(RC×RZ)\R[λ]

|t · τπ|

=
∑

τ∈H∩SC\SC/RC

∑
ϕ∈Hτ∩(RC×RZ)\RC×RZ

∑
σ∈RC×RZ\R[λ]

|t · τϕσ|

=
∑

τ∈H∩SC\SC/RC

∑
χ∈Hτ∩RC\RC

∑
ψ∈Hτ∩RZ\RZ

∑
σ∈RC×RZ\R[λ]

|t · τχψσ|

where the last two equalities hold by parts (ii) and (iv) of Lemma 3.20

respectively, each with R = R[λ], L = Hτ , I = RC , J = RZ .

Now we combine terms using Lemma 3.20(i) with Γ = SC , I = H ∩ SC
and J = RC . We see that the final line above becomes

Λ(

R

(t,A,B)) =
∑

τ∈H∩SC\SC

∑
ψ∈Hτ∩RZ\RZ

∑
σ∈RC∩RZ\R[λ]

|t · τψσ|.

Notice that, because the boxes of Z are fixed by τ ∈ SAtB, we have that

Hτ ∩ RZ = H ∩ RZ is independent of τ . The rightmost sum above also has

indexing set independent of τ , and both of these indexing sets are subsets of

R[λ], so it suffices to show that
∑

τ∈H∩SC\SC |t · τσ| = 0 for all σ ∈ R[λ].

Fix σ ∈ R[λ]. Recall from the definition of a row Garnir relation that A ⊆
rowi[λ] and B ⊆ rowi′ [λ] for some 1 6 i < i′ 6 λ1, and that |A|+ |B| > λi.

Thus by the pigeonhole principle there exists a column containing both a box
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in A and a box in B. Moreover the same claim holds if we act by σ first; that is,

there exist a ∈ A, b ∈ B and 1 6 j 6 λ1 such that aσ = (i, j) and bσ = (i′, j).

Let ω = (a b) ∈ SAtB, and note that ωσ = σ−1ωσ = (aσ bσ) ∈ CPP(λ).

Define an action of ω on the set of cosets H ∩ SAtB\SAtB by right

multiplication. If τ ∈ H∩SAtB\SAtB is in an orbit of size 1, then t·τ = t·τω
and hence t · τσ = t · τσωσ. But then t · τσ has the same entries in aσ and bσ;

since these are in the same column, this implies |t · τσ| = 0. If {τ, τω} is an

orbit of size 2, then since ωσ ∈ CPP(λ) we have |t·τωσ| = |t·τσωσ| = −|t·τσ|,
and so the contributions to the sum of these orbits cancel out. Thus the

entire sum is zero, as required. �

Just as for the original Garnir relations, it suffices to consider a certain

subset of the row Garnir relations: those in which the chosen rows are

adjacent, and boxes are taken from the right of the upper row and the left of

the lower row. We call these relations row snake relations; they are defined

formally below. Unlike the snake relation, which permitted the chosen

boxes to overlap only in a single row, here we permit them to overlap in

multiple columns. This is due to our straightening algorithm (Lemmas 3.23

and 3.24) requiring the chosen boxes to contain all or none of the instances

of a particular entry in a row.

Definition 3.22. A row Garnir relation

R

(t,A,B) is called a row snake relation

when, in the notation of Definition 3.16, i′ = i + 1 and there exist j 6 j′

such that A = { (i, r) | j 6 r 6 λi } and B = { (i′, r) | 1 6 r 6 j′ }. In this

case, we may also label the row Garnir relation by (t, i, (j, j′)).

Lemma 3.23 (cf. Lemma 2.10). Let t be a row semistandard tableau, and

suppose i and j 6 j′ are such that there exists j 6 j0 6 j′ such that:

• t(i, j0) > t(i+1, j0);

• t(i, j) = t(i, j0) and t(i+ 1, j′) = t(i+ 1, j0);

• t(i, j−1) < t(i, j) (or j = 1) and t(i+1, j′) < t(i+1, j′+1) (or j′ =

λi+1).
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Then

R

(t,i,(j,j′)) = rsym(t) +
∑
u<rt

mu rsym(u)

for some elements mu in the subring of K generated by 1.

Proof. The diagram below illustrates the hypotheses satisfied by the

sets A = { (i, r) | j 6 r 6 λi } and B = { (i + 1, r) | 1 6 r 6 j′ } defining

the Garnir relation (these sets are shaded in the diagram).

1 j j0 j′ λi

i

i+1 6 6 6 6 = = <

< = 6 6 6 6 6 6
6

In particular all the boxes in B contain entries less than or equal to all

the entries in boxes in A. Therefore for any τ ∈ SAtB, we have t · τ <r∼ t,

and furthermore row equivalence t · τ ∼r t holds if and only if τ ∈ (stab(t) ∩
SAtB)(SA × SB). Thus the row symmetrisation rsym(t) appears precisely

once in

R

(t,i,(j,j′)), with coefficient
∣∣rstab(t) : rstab(t) ∩ (SAtB × S[λ]\AtB)

∣∣.
But by the assumptions, as displayed above, every entry in row i of t

occurs either only in A or only in rowi[λ] \ A, and likewise every entry

in row i + 1 of t occurs either only in B or only in rowi+1[λ] \ B. Then

rstab(t) ⊆ SAtB × S[λ]\AtB, and so this coefficient is 1. �

Lemma 3.24 (cf. Lemma 2.11). Let t be any tableau. Then there exists

some K-linear combination γ of row snake relations (with coefficients in the

subring of K generated by 1) such that

rsym(t) + γ =
∑

s∈SSYT(λ)

as rsym(s)

for some elements as in the subring of K generated by 1 (which may be all

zero).

Proof. Without loss of generality, we may assume t is row semistandard.

If t is also column standard, we are done. Otherwise, choose a box (i, j0) such

that t(i+1, j0) 6 t(i, j0). Then pick j 6 j0 6 j′ such that t(i, j−1) < t(i, j) =
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t(i, j0) (or j = 1) and t(i+1, j0) = t(i+1, j′) < t(i+1, j′+1) (or j′ = λi+1).

By Lemma 3.23 we have that

R

(t,i,(j,j′)) = rsym(t) +
∑

u<rt
mu rsym(u) for

some elements mu in the subring of K generated by 1. Then rsym(t)− R

(t,i,j)

is a linear combination of row symmetrisations of tableaux which precede t

in the row ordering. The lemma then follows by induction. �

Analogously to Lemma 2.11, the above lemma gives a direct proof that

the semistandard copolytabloids span ∆λV (and hence form a basis by

Lemma 3.12), a fact which we deduced by dimension counting in Proposi-

tion 3.13.

Proposition 3.25 (cf. Proposition 2.13). There is equality ker(Λ|Symλ V ) =

G

Rλ(V ) (and consequently G

Rλ(V ) is a KG-module), and hence there is a

KG-isomorphism

∆λV ∼= Symλ V�G

Rλ(V ) .

Proof. From Proposition 3.21, we have that G

Rλ(V ) ⊆ ker Λ. It there-

fore suffices to show that the row snake relations span ker Λ.

Let κ ∈ ker Λ. By Lemma 3.24 there exists a K-linear combination γ of

row snake relations such that

κ+ γ =
∑

s∈SSYT(λ)

αs rsym(s)

for some elements αs ∈ K. Applying Λ to this equation and using that

G

Rλ(V ) ⊆ ker Λ, we find

0 =
∑

s∈SSYT(λ)

αs

e(s).

By Lemma 3.12 the semistandard copolytabloids are K-linearly independent,

so this implies that αs = 0 for all s. Hence κ = −γ is in the span of the row

snake relations, as required. �
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4. Specht modules and Weyl modules

We now specialise the constructions of this chapter to representations of

the general linear and symmetric groups. We obtain some important families

of modules: the Specht modules for the symmetric group, and the Weyl and

dual Weyl modules for the general linear group.

4.1. Specht modules and their duals

Let W be the natural permutation representation of the symmetric group

Sr. That is, W has a basis w1, . . . , wr such that σwi = wiσ−1 for σ ∈ Sr.
With respect to this basis, W is a permutation module, and so the multilinear

constructions of the previous chapter yield KSr-modules when restricted

to tableaux of symmetric type (recall tableaux of symmetric type are those

with all entries distinct).

Let Sλ = ∇λsymW . We call Sλ the Specht module. The set of standard

tableaux of symmetric type label a basis, and moreover a permutation basis,

for Sλ.

Due to the submodule construction of the Schur endofunctor, Sλ can be

viewed as a submodule of Symλ
symW (called the Young permutation module).

Due to the quotient construction of the Schur endofunctor, Sλ is known to

obey the Garnir relations.

This construction of the Specht modules is due to James [Jam78]. James

also gives the following well-known classification of the simple modules of

the symmetric group Sr:

• when K has characteristic 0, the Specht modules form a complete

irredundant set of simple KSr-modules;

• when K has characteristic p, the Specht modules labelled by p-regular

partitions have simple heads, and these heads form a complete irre-

dundant set of simple KSr-modules (a partition is said to be p-regular

if no part is repeated p or more times).

The dual (Sλ)∗ of the Specht module can be obtained from the Weyl

endofunctor (restricted to tableaux of symmetric type). Indeed, as W is
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a permutation module, we have W ∼= W ∗, and so ∆λW ∼= (∇λW )∗. Thus

∆λ
symW

∼= (Sλ)∗.

Remark 4.1. Some authors (such as Mathas [Mat99]) instead call ∆λ
symW

the Specht module, the dual of our definition.

4.2. Weyl and dual Weyl modules

Suppose K is infinite. Recall E denotes the natural representation of

GLn(K); that is, E has basis X1, . . . , Xn with respect to which ρE(g) = g

for all g ∈ GLn(K).

We call ∆λE the Weyl module and we call ∇λE the dual Weyl module.

Since E◦ ∼= E, we have that (∆λE)◦ ∼= ∇λE, as the name suggests.

We will see in §5 in the following chapter that both modules ∆λE and

∇λE are polynomial of degree |λ| (Proposition 5.6).

As shown for example in [EGS08], the Weyl and dual Weyl modules are

indecomposable, and moreover the Weyl modules have simple heads and

(hence) the dual Weyl modules have simple socles. We write

Lλ(E) = ∆λE�rad ∆λE = soc∇λE.

These simple modules form a complete irredundant set of simple modules in a

certain subcategory of representations of GLn(K) (the category of polynomial

representations of GLn(K) of degree |λ|).
Many alternative constructions of the Weyl and dual Weyl modules are

available; comparisons with our construction were made in §0.2.



CHAPTER II

Polynomial representations of matrix groups

In this chapter we give a brief introduction to the category of polynomial

representations of matrix groups. This category includes the Weyl and dual

Weyl modules constructed at the end of the previous chapter.

Definitions, examples and first results are given in §5; notably we show

that a polynomial representation of GLn(K) is determined up to a power of

the determinant by the action of SLn(K). An important connection between

polynomial representations and representations of the symmetric group is

given by the Schur functor and its inverse (not to be confused with the Schur

endofunctor constructed in Chapter I); these functors are introduced in §6.

In the short §7 we define the dimension reduction functor, which gives a

connection between polynomial representations of GLn(K) for different n.

Polynomial representations, and the Schur functor and its inverses, are

usually described in the language of the Schur algebra (see [EGS08, §2 and

§6]). Here we give the explicit, intuitive interpretation of the property of

being polynomial (see [Wil14]), and an elementary construction of the Schur

functor and its inverses which requires only the notions of weight spaces,

tensor products and hom spaces. While we are primarily concerned with the

case where K is an infinite field, our interpretation has the advantage that it

permits extension to finite fields (see Remark 6.22 for a comparison with the

Schur algebra approach).

57
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5. Elementary results on polynomial representations

In this section we define polynomial representations and see that various

common operations on modules preserve the property of being polynomial,

including the multilinear constructions of the previous chapter. It follows

that the Weyl and dual Weyl modules are polynomial. We also show that

the action of the special linear group is sufficient to determine a polynomial

representation of the general linear group, up to a power of the determinant.

5.1. Definitions and examples

Definition 5.1 (Polynomial representations). Suppose K is an infinite field

and G 6 GLn(K) is an infinite matrix group. A representation ρ of G is

called polynomial if there exist polynomials ρ(i,j) ∈ K[x1,1, x1,2, . . . , xn,n]

over K in n2 variables such that for all g ∈ G we have

ρ(g)i,j = ρ(i,j)(g1,1, g1,2, . . . , gn,n).

We call the polynomials ρ(i,j) the representing polynomials. A polynomial

representation of GLn(K) has degree r if all the representing polynomials

are homogeneous of degree r.

That is, a representation of a matrix group G is polynomial if, with

respect to some basis, the entries of the matrix representing the action of

g ∈ G are (fixed) polynomials in the entries of g.

Note that if ρ has representing polynomials ρ(i,j) and M is a fixed

invertible matrix, then the polynomials ρ̂(i,j) =
∑

a,bMi,aρ
(a,b)M−1

b,j are rep-

resenting polynomials for MρM−1. Thus if representing polynomials exist

for one choice of basis then they exist for all choices of basis.

We illustrate the definition with some examples and non-examples.

Example 5.2 (Examples of polynomial representations).

(i) The natural representation E of GLn(K) is polynomial of degree 1,

with representing polynomials ρ
(i,j)
E = xi,j .

(ii) The determinant representation detE is polynomial of degree n.

(iii) Let E be the natural representation of GL2(K) with standard basis

{X,Y }, and consider the representation Sym2E. Denoting elements
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of the symmetric power by concatenating their factors, we use the

basis {X2, XY, Y 2} for Sym2E. The matrix
(
α β
γ δ

)
∈ GL2(K) is

represented by

ρSym2 E

((
α β
γ δ

))
=


α2 αβ β2

2αγ αδ + βγ 2βδ

γ2 γδ δ2

 .

Representing polynomials are ρ
(1,1)

Sym2 E
= x2

1,1, ρ
(2,1)

Sym2 E
= 2x1,1x2,1, etc,

and thus Sym2E is polynomial of degree 2. (We show in Proposition 5.6

that all images of polynomial representations under Schur and Weyl

endofunctors are polynomial.)

Example 5.3 (Non-examples of polynomial representations).

(i) The 1-dimensional representation of GLn(K) on which g ∈ GLn(K)

acts by (det g)−1 is not polynomial, as the reciprocal of the determinant

cannot be written as a polynomial in the entries of the matrix.

(ii) Consider the dual E∗ of the natural representation of GL2(K). The

matrix
(
α β
γ δ

)
∈ GL2(K) is represented by

ρE∗
((

α β
γ δ

))
=
(
α β
γ δ

)−>
=

1

αδ − βγ

(
δ −γ
−β α

)
whose entries cannot be written as polynomials in α, β, γ, δ, again due

to the reciprocal of the determinant. This illustrates that the dual of

a polynomial representation need not be polynomial.

(iii) [cf. Example 1.2, Wil14] Suppose K = R and G = GLn(R), and

consider the 2-dimensional representation ρ : G→ GL2(R) defined by

ρ(g) =

(
1 log|det g|
0 1

)
.

This is not polynomial as the logarithm cannot be written as a poly-

nomial.

Proposition 5.4. Suppose K is an infinite field. There is a unique choice

of representing polynomials for a polynomial representation of GLn(K). In

particular, the degree of a polynomial representation is well-defined.
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Proof. This follows from two facts: the set of invertible matrices is

Zariski-dense in the set of all matrices, and over an infinite field a polynomial

in N variables which vanishes on all inputs is the zero polynomial (this latter

fact can be shown by induction on N , by fixing N − 1 variables and using

that a nonzero polynomial in one variable has only finitely many roots).

Explicitly, suppose polynomials f, h ∈ K[x1,1, x1,2, . . . , xn,n] agree on

all invertible matrices. Let det ∈ K[x1,1, x1,2, . . . , xn,n] be the determinant

polynomial. The polynomial (f − h)det vanishes on all matrices, and so is

the zero polynomial; since det 6= 0, we conclude f = h. �

Remark 5.5. Proposition 5.4 may fail for infinite matrix groups other than

GLn(K). For example, if G = SLn(K), then representing polynomials may

be multiplied by powers of the determinant without changing their evaluation

on elements of G.

Proposition 5.6.

(i) Submodules and quotients of a polynomial representation (of degree r)

are polynomial (of degree r).

(ii) Direct sums of polynomial representations (of degree r) are polynomial

(of degree r).

(iii) Tensor products of polynomial representations (of degrees ri) are poly-

nomial (of degree the sum of the ri).

(iv) The contravariant dual of a polynomial representation (of degree r) is

polynomial (of degree r).

(v) Images under Schur and Weyl endofunctors ∇λ and ∆λ of a polynomial

representation (of degree r) are polynomial (of degree |λ|r).

In particular, the Weyl and dual Weyl modules ∆λE and ∇λE are polynomial,

of degree |λ|.

Proof. Parts (i)–(iv) are clear from considering the forms of the repre-

senting matrices. Part (v) follows from the previous parts. �

Remark 5.7. The definition of a polynomial representation still makes sense

if the field K is finite, or if the matrix group G is finite. However, it is not a

useful definition to make, for the following reasons.
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(i) All representations of a finite matrix group satisfy the definition of

being polynomial. Indeed, let F ⊆ K be the set of field elements which appear

as entries of matrices in G, and for each α ∈ F define a polynomial 1α(x) =∏
β∈F\{α}(x− β)(α− β)−1 so that 1α(α) = 1 and 1α(β) = 0 if β 6= α. Then

define for each g ∈ G a polynomial 1g(x1,1, x1,2, . . . , xn,n) =
∏
i,j 1gi,j (xi,j)

so that 1g(g1,1, g1,2, . . . , gn,n) = 1 and 1g vanishes on all other inputs. Then

given any representation ρ of G we can choose representing polynomials

ρ(i,j) =
∏
g∈G ρ(g)i,j1g.

(ii) The degree of a polynomial representation of the finite GLn(K)

(or any finite matrix group) would not be well-defined. This can be seen

by modifying the construction in (i) above: the representing polynomials

constructed there are homogeneous of degree (|F | − 1)|G|, but for example

we can replace the polynomials 1α with their squares and obtain representing

polynomials which are homogeneous of twice that degree. Alternatively, in

the case of a finite field, the degrees of polynomials being ill-defined is clear

from the fact that αq = α for any α ∈ K when K is of order q.

Remark 5.8. We note that the action of GLn(K) on a polynomial rep-

resentation can be extended to an action of Matn(K), the semigroup of

all (not necessarily invertible) n × n matrices. This is achieved simply by

evaluating the representing polynomials on arbitrary matrices. We need to

check, however, that the semigroup multiplication is compatible with this

action. Writing ρ(i,j) for the representing polynomials, the compatibility

requirement is precisely the identity

n∑
k=1

ρ(i,k)(x1,1, x1,2, . . . , xn,n)ρ(k,j)(y1,1, y1,2, . . . , yn,n)

= ρ(i,j)
( n∑
k=1

x1,kyk,1 ,
n∑
k=1

x1,kyk,2 , . . . ,
n∑
k=1

xn,kyk,n

)
between polynomials in 2n2 variables, for all 1 6 i, j 6 n. Indeed, since this

identity holds for all choices of variables corresponding to pairs of invertible

matrices, then (as in the proof of Proposition 5.4) it holds for all choices of

variables.
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5.2. Restriction to special linear groups

It is often simpler to work over the special linear group SLn(K) than the

full general linear group. In this subsection we record the results required to

pass between these groups.

We first identify generating sets for the general and special linear groups.

We say a matrix is an elementary transvection if it has 1s on the diagonal

and a unique nonzero off-diagonal entry; we say a matrix is a scalar matrix

if it is a (nonzero) scalar multiple of the identity matrix.

Lemma 5.9 (Generation of SLn(K) and GLn(K)).

(i) The group SLn(K) is generated by elementary transvections.

(ii) The group GLn(K) is generated by elementary transvections and diag-

onal matrices.

(iii) If K is algebraically closed, then GLn(K) is generated by elementary

transvections and scalar matrices.

Proof. [Lan02, Chapter XIII, Proposition 9.1] proves (i) and (ii). When

K is algebraically closed, we can choose an nth root of the determinant, and

a simple modification to the proof yields (iii). �

The key result for passing from representations of SLn(K) to GLn(K) is

the following proposition.

Proposition 5.10. Suppose K is infinite. Let V and W be polynomial

representation of GLn(K) of degrees r and s, where r > s. If V |SLn(K)
∼=

WSLn(K), then there exists m > 0 such that r − s = mn and V ∼= W ⊗
(detE)⊗m.

Proof. Suppose V |SLn(K)
∼= W |SLn(K); then there exist bases for V and

W such that ρV (g) = ρW (g) for all g ∈ SLn(K). Then for each pair of

coordinates (i, j), the difference of the representing polynomials ρ
(i,j)
V − ρ(i,j)

W

vanishes on SLn(K).

Suppose first that K is algebraically closed. Then SLn(K) is the algebraic

set of zeroes of the polynomial det−1, and so by Hilbert’s Nullstellensatz

(as formulated for example in [AM69, Chapter 7, Exercise 14]), there exists
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l ∈ N such that (ρ
(i,j)
V − ρ(i,j)

W )l lies in the ideal generated by det−1. Since

the polynomial det−1 is irreducible and hence this ideal is prime, in fact

ρ
(i,j)
V − ρ(i,j)

W lies in the ideal. Thus we can write ρ
(i,j)
V − ρ(i,j)

W = (det−1)f for

some polynomial f ∈ K[x1,1, x1,2, . . . , xn,n], and decompose into a system

of equations of homogeneous polynomials. Solving this system leads routinely

to the requirement r = s+mn for some m > 0 and that ρ
(i,j)
V = (det)mρ

(i,j)
W .

If K is not algebraically closed, let K denote its algebraic closure, and

construct polynomial representations V and W of GLn(K) over K by using

the same representing polynomials as V and W . That is, we set ρ
(i,j)

V
= ρ

(i,j)
V

and ρ
(i,j)

W
= ρ

(i,j)
W . (This indeed defines a representation, as can be seen

similarly to the argument in Remark 5.8: the polynomial equalities which

imply compatibility with the group multiplication hold when evaluated on

any invertible matrix over K, and so are genuine equalities of polynomials.)

It suffices to show that ρV and ρW agree on SLn(K), for then we can

apply the algebraically closed case above to find that r − s = mn and

ρ
(i,j)
V = ρ

(i,j)

V
= (det)mρ

(i,j)

W
= (det)mρ

(i,j)
W . By Lemma 5.9(i), it suffices

to show that ρV (g)i,j = ρW (g)i,j for all elementary transvections g, for all

1 6 i, j 6 d. Fix 1 6 a 6= b 6 n and consider elementary transvections

whose unique off-diagonal entries are in position (a, b). Define univariate

polynomials fV , fW ∈ K[y] by specialising the representing polynomials ρ
(i,j)
V

and ρ
(i,j)
W at xa,b = y, xc,c = 1 for 1 6 c 6 n, and all other variables equal to

0. Writing g(α) for the elementary transvection having ga,b = α for α ∈ K,

we therefore have

fV (α) = ρV (g(α))i,j

and likewise for W . But ρV and ρW agree on elements of SLn(K), so

fV (α) = fW (α) for all α ∈ K. Since K is infinite, this implies fV = fW , and

so ρV (g(α))i,j = ρW (g(α))i,j for all α ∈ K as required. �

Remark 5.11. A proof of Proposition 5.10 which avoids the Nullstellensatz

is possible when it is known that r − s is an integer multiple of n. Writing

m for this integer, we are required to show ρV = ρW ⊗ ρ⊗mdet . When K is

algebraically closed, Lemma 5.9 tells us that GLn(K) is generated by SLn(K)
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and the scalar matrices, and since the homomorphisms agree on SLn(K) by

hypothesis, it suffices to show that ρV (αIn) = αmnρW (αIn) for all α ∈ K×.

Consider specialising the representing polynomials ρ
(i,j)
V at xi,i = y for

all 1 6 i 6 n and all other variables at 0, yielding univariate polynomials

in K[y]. Since each ρ
(i,j)
V is homogeneous of degree r, the result is either

the zero polynomial or a multiple of yr, and considering the case y = 1

determines that the diagonal representing polynomials specialise to yr and

all others vanish. Thus ρV (αIn) = αrId where d is the common dimension

of V and W , and likewise ρW (αIn) = αsId. The requirement follows.

Separately, we can completely classify the 1-dimensional polynomial

representations using the following group-theoretic fact.

Lemma 5.12. Unless n = 2 and K = F2, the general linear group GLn(K)

has derived subgroup SLn(K) and abelianisation K×.

Proof. The quotient GLn(K)�SLn(K)
∼= K× is abelian, and so the

derived subgroup of GLn(K) is contained in SLn(K). On the other hand,

SLn(K) is its own derived subgroup except when n = 2 and K = F2 ([Lan02,

Chapter XIII, Theorems 8.3 and 9.2]), and hence the derived subgroup of

GLn(K) contains SLn(K). �

Remark 5.13. When n = 2 and K = F2, we have GL2(F2) ∼= SL2(F2) ∼=
S3. Thus the derived subgroup is isomorphic to A3 6∼= SL2(F2), and the

abelianisation is isomorphic to C2 6∼= F×2 .

Proposition 5.14. Let V be a 1-dimensional representation of GLn(K),

and suppose that either V is polynomial or K is finite. Then V is isomorphic

to a non-negative power of the determinant representation (and in particular

V |SLn(K) is the trivial representation).

Proof. Let ρ : GLn(K)→ K× be a one-dimensional representation of

GLn(K). Suppose first that it is not the case that n = 2 and K = F2; then

the derived subgroup of GLn(K) is SLn(K). By the universal property of

the abelianisation, ρ factors through the surjection det : GLn(K)� K×; let

ϕ : K× → K× be the map such that ϕdet = ρ. It then suffices to show that
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ϕ : K× → K× is a non-negative integer power map. If K is finite, then K×

is a finite cyclic group and this is clear. If V is polynomial, then this follows

from the requirement that ρ(1,1) is a polynomial.

For the case n = 2 and K = F2, observe that the determinant represen-

tation is trivial, and that GL2(F2) ∼= SL2(F2) ∼= S3 so in characteristic 2 the

trivial representation is the unique 1-dimensional representation. �

Remark 5.15. Proposition 5.14 also holds, by the same proof, for represen-

tations of finite groups in non-defining characteristic, with the exception of

the case n = 2 and K = F2. In this case we have GL2(F2) ∼= SL2(F2) ∼= S3

and the determinant representation is the trivial representation, but the

1-dimensional sign representation exists in characteristics other than 2.
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6. The Schur functor and its inverses

The Schur functor and its one-sided inverses provide an important con-

nection between the representation theory of the general linear groups and

of the symmetric groups. In this section we define the Schur functor F as a

weight space; show it is isomorphic to a hom functor and hence define its

left-adjoint G⊗; and finally use duality to deduce F has a right-adjoint GHom

and hence is isomorphic to a tensor product.

The approach here differs from the usual description of the Schur functor

in the language of the Schur algebra (see [EGS08, Section 6]), where the

definition as a weight space can be seen to be equivalent to multiplication

by a certain idempotent. Our approach avoids the machinery of coalgebras,

and opens the possibility of considering these functors over finite fields.

6.1. Weight spaces and the Schur functor

Definition 6.1 (Weight space). Suppose K is infinite. Let V be a represen-

tation of GLn(K). Let ν be a composition with at most n nonzero parts.

The ν-weight space of V is the subspace

Vν =

{
v ∈ V

∣∣∣∣ ( α1
. . .

αn

)
v = αν11 · · ·ανnn v for all α1, . . . , αn ∈ K×

}
.

A composition ν such that Vν 6= 0 is called a weight of V . A nonzero element

v ∈ Vν is called a weight vector with weight ν.

The assumption that K is infinite is made so that there exist field

elements of arbitrarily large order, and hence so that weights are well-defined

(that is, so that weight vectors have a unique weight).

Example 6.2. The canonical basis of the natural representation E of

GLn(K) consists of weight vectors: the basis element Xi has weight

(0, . . . , 0, 1, 0, . . . , 0) where the 1 occurs in the ith position.

The polytabloid basis for the dual Weyl module ∇λE consists of weight

vectors: the polytabloid e(t) has weight the weight of t (that is, the multiset

of entries of t expressed as a composition, as defined in §1.1). Likewise

TbxλE, SymλE, SymλE,
∧λE and ∆λE have weight vector bases labelled
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by tableaux, with the weights of the vectors being the weight of the tableaux.

This explains the terminology for the multiset of entries of t.

For n > r, we write the permutation matrix corresponding to σ ∈ Sr as

gσ ∈ GLn(K), defined by

(6.3) (gσ)i,j = 1[iσ = j]

(where we view iσ = i for i > r). A simple calculation shows this definition

satisfies gστ = gσgτ for σ, τ ∈ Sr; that is, σ 7→ gσ is a group homomorphism.

Let S̃r 6 GLn(K) denote this subgroup of permutation matrices (those which

fix r + 1, . . . , n). Of course, S̃r ∼= Sr.

Lemma 6.4. Suppose K is infinite and n > r. Let V be a left KGLn(K)-

module. The weight space V(1r,0n−r) is invariant under the action of S̃r, and

therefore becomes a left KSr-module.

Proof. Let v ∈ V(1r,0n−r) and let σ ∈ Sr; we are required to show that

gσv ∈ V(1r,0n−r). Let

h =

(
α1

. . .
αn

)
and observe that

(g−1
σ hgσ)i,j =

n∑
k=1

n∑
l=1

αk1[iσ−1 = k]1[k = l]1[lσ = j]

= αiσ−11[i = j].

Thus

hgσv = gσ

( α1σ−1
. . .

αnσ−1

)
v = α1 · · ·αrgσv

so gσv ∈ V(1r,0n−r) as required. �

Definition 6.5 (Schur functor). Suppose K is infinite and n > r. The Schur

functor F is the functor from the category of polynomial left KGLn(K)-

modules of degree r to the category of left KSr-modules defined by

F(V ) = V(1r, 0n−r)

on modules, and by restriction on maps.
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Note that the action of F on maps is indeed well-defined: if ϕ : V → V ′

is a GLn(K)-equivariant map and diagonal matrices act by certain scalars

on v ∈ V , then diagonal matrices act by the same scalars on ϕ(v) ∈ V ′; thus

restriction to a weight space in the domain permits restriction to the same

weight space in the codomain.

We remark that the definition of the Schur functor makes sense on

any polynomial representation of GLn(K) (or indeed any representation of

GLn(K) when K is infinite). However, if V is a polynomial representation

of GLn(K) of degree r′ 6= r, then F(V ) = 0. This is because if there exists a

nonzero v ∈ V(1r,0n−r), then choosing a basis of V whose first element is v we

have that the representing polynomial ρ(1,1) has the monomial x1,1 · · ·xr,r of

degree r as a summand.

The following identification of the image of the dual Weyl module under

the Schur functor F is well-known. (On the other hand, the image of the

Specht module under the one-sided inverse Schur functors defined in the

following subsections is harder to determine, and is the subject of Chapter IV.)

Proposition 6.6 (cf. [EGS08, §6.3]). Suppose K is infinite and n > r. Let

λ be a partition of r. There is an isomorphism F(∇λE) ∼= Sλ.

Proof. As noted in Example 6.2, the polytabloid basis for ∇λE is a

basis of weight vectors, with e(t) having weight the weight of t. Thus F(∇λE)

is spanned by polytabloids labelled by tableaux of weight (1r, 0n−r), which

are the tableaux of symmetric type with entries in {X1, . . . , Xr} (an r-subset

of the basis for E). The isomorphism to Sλ is given by the obvious map

sending such a polytabloid to the polytabloid of symmetric type with entries

in the basis for the natural permutation representation W (also an r-set).

Indeed this map respects the Sr-action, as permutation matrices act on the

basis elements X1, . . . , Xr of E precisely as permutations act on the basis of

the natural permutation representation W . �
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6.2. The tensor-hom adjunction and the left-adjoint inverse Schur

functor

We show that the Schur functor can be viewed as a hom functor. This

demonstrates that F is left exact, and furthermore allows us to identify via

the tensor-hom adjunction a left-adjoint to F , which turns out to also be a

right-inverse.

We first recall how a bimodule gives rise to hom and tensor functors.

Let G1 and G2 be groups, and suppose V is a left KG1-module, U is a

left KG2-module, and M is a (KG1,KG2)-bimodule. Then the hom space

HomKG1(M,V ) is a left KG2-module, with action on f ∈ HomKG1(M,V )

defined by (g2f)(m) = f(mg2) for all g2 ∈ G2, m ∈ M . Meanwhile the

tensor product M ⊗KG2 U is a left KG1-module, with action on m ⊗ u ∈
M ⊗KG2 U defined by g1(m ⊗ u) = (g1m) ⊗ u for all g1 ∈ G1. Moreover,

the functor HomKG1(M,−) : KG1-mod→ KG2-mod is right adjoint to the

functor M ⊗− : KG2-mod→ KG1-mod (where A-mod denotes the category

of left modules of an algebra A); that is, there are isomorphisms of abelian

groups

HomKG1(M ⊗KG2 U, V ) ∼= HomKG2(U,HomKG1(M,V ))

which are natural in V and U .

In our setting the bimodule we use is the (KGLn(K),KSr)-bimodule

E⊗r, the rth tensor power of the natural representation of GLn(K). The

left GLn(K)-action is the usual diagonal action on tensor products of rep-

resentations of groups. The right Sr-action is the place permutation action

which permutes the tensor factors: given Xi1 ⊗ · · · ⊗Xir ∈ E⊗r and σ ∈ Sr,
we have

(Xi1 ⊗ · · · ⊗Xir) · σ = Xi1σ−1 ⊗ · · · ⊗Xirσ−1 .

When n > r, the element X1 ⊗ · · · ⊗ Xr ∈ E⊗r generates E⊗r as a

KGLn(K)-module (for any field K); write X[r] for this element. Note that

the action of Sr on X[r] can be written in terms of the action of GLn(K) via
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the subgroup of permutations matrices:

X[r] · σ = gσX[r](6.7)

for any σ ∈ Sr (beware this behaviour applies only to the generator X[r], and

in particular not to X[r] · τ for τ ∈ Sr, so there is no expectation for X[r] · τσ
to be equal to gσgτX[r]; rather we have X[r] · τσ = gτσX[r] = gτgσX[r]).

Lemma 6.8. Suppose K is infinite and n > r. Let V be a polynomial

representation of GLn(K) of degree r, and let v ∈ V(1r,0n−r). Then there

exists a unique GLn(K)-equivariant map E⊗r → V sending X[r] 7→ v.

Proof. The element X[r] ∈ E⊗r generates E⊗r as a KGLn(K)-module,

so the image of X[r] determines a GLn(K)-equivariant map. Uniqueness is

therefore clear.

For existence, we are required to show that if γ ∈ KGLn(K) is such that

γX[r] = 0, then γv = 0. Suppose γ =
∑

l∈L γlg
(l) ∈ KGLn(K) is such that

γX[r] = 0, where L is some finite indexing set, γl ∈ K and g(l) ∈ GLn(K).

Observe that the coefficient of Xi1 ⊗· · ·⊗Xir in γX[r] is
∑

l∈L γlg
(l)
i1,1
· · · g(l)

ir,r
.

Since this coefficient is zero, we have that
∑

l∈L γlg
(l)
i1,1
· · · g(l)

ir,r
= 0 for every

choice of 1 6 i1, . . . , ir 6 n.

Let d = dimV , write v = v1, and extend to a basis {v1, . . . , vd} of V .

We consider the representing polynomials ρ(i,j) of V with respect to this

basis. Recall we write representing polynomials in the n2 variables xi,j

corresponding to the (i, j)th coordinate of a matrix. Fixing i ∈ [n], we aim

to show that the polynomials ρ(i,1) (those corresponding to the action on v)

are sums of monomials of the form xi1,1 · · ·xir,r; by the previous paragraph,

each of these monomials vanishes when applied to γ, giving the requirement

that γv = 0. This approach is illustrated in Example 6.9 below.

Given that ρ(i,1) is of degree r, any monomial not of the required form

has some m ∈ [r] which does not appear as the second label in any of its

factors. Thus to prove the lemma it suffices to show, given a set of r variables

{xi1,j1 , . . . , xir,jr} such that there exists m ∈ [r] with m 6∈ {j1, . . . , jr}, that

any monomial in these r variables has zero coefficient in ρ(i,1) (when written

with respect to the monomial basis). Let ρ̂(i,1) be the linear combination
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in ρ(i,1) of the monomials in the r variables in consideration; we show that

ρ̂(i,1) = 0.

Pick elements α1, . . . , αr ∈ K, and let g be the (singular, having at most

r nonzero entries) matrix defined by

gi,j =

αa if (i, j) = (ia, ja) for a ∈ [r],

0 if (i, j) 6∈ {(i1, j1), . . . , (ir, jr)}.

Any monomial including a variable not in our chosen set {xi1,j1 , . . . , xir,jr}
vanishes on g, and hence

ρ(g)i,1 = ρ̂(i,1)(g1,1, g1,2, . . . , gn,n).

Moreover, ρ̂(i,1) can be viewed as a polynomial in just the r chosen variables

xi1,j1 , . . . , xir,jr ; suppressing the other variables, we obtain

(6.8.1) ρ(g)i,1 = ρ̂(i,1)(α1, . . . , αr).

Let h be the (singular) diagonal matrix h whose diagonal entries are all

1 except for hm,m = 0. Observe that

(gh)i,j =
n∑
k=1

gi,khk,j

=

r∑
a=1

αa1[(i, j) = (ia, ja)]1[j 6= m]

= gi,j

where the last equality holds by the property that m 6∈ {j1, . . . , jr}. Thus

gh = g.

Recall that the action of GLn(K) on V extends to an action of Matn(K)

(see Remark 5.8). Since v ∈ V(1r,0n−r) and h is a diagonal matrix with a 0

in one of the first r diagonal entries, we have hv = 0. Thus gv = ghv = 0,

and hence ρ(g)i,1 = 0. By (6.8.1), this says ρ̂(i,1)(α1, . . . , αr) = 0. Since this

holds for any choice of α1, . . . , αr ∈ K, we have ρ̂(i,1) = 0 as required. �

Example 6.9. Suppose n = r = 2, and let V = Sym2E, a polynomial

representation of GL2(K) of degree 2. Write {X,Y } for the canonical basis

of E, so X[r] = X ⊗ Y . The weight space (Sym2E)(12) is spanned by
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the element X ⊗ Y + Y ⊗ X. We verify that the K-linear map sending

X ⊗ Y 7→ X ⊗ Y + Y ⊗X is well-defined by considering the representing

polynomials, as in the proof of Lemma 6.8.

Extending the basis of the weight space, let {X⊗Y +Y ⊗X,X⊗X,Y ⊗
Y } be our basis of Sym2E. We can explicitly compute the representing

polynomials with respect to this basis:

ρSym2 E

((x1,1 x1,2

x2,1 x2,2

))
=


x1,1x2,2 + x1,2x2,1 x1,1x2,1 x1,2x2,2

2x1,1x1,2 x2
1,1 x2

1,2

2x2,1x1,2 x2
2,1 x2

2,2

 .

The polynomials in the first column (those representing the action on X ⊗
Y + Y ⊗X) are linear combinations of monomials of the form xi1,1xi2,2 for

some i1, i2. To illustrate how this fact was proved in Lemma 6.8, suppose, for

example, that the monomial x1,1x2,1 occurred in the first column. Then given

α1, α2 ∈ K× the matrix
(
α1 0
α2 0

)
would have nonzero action on X⊗Y +Y ⊗X,

contradicting that X ⊗ Y + Y ⊗X lies in the (12)-weight space.

In order for the map X⊗Y 7→ X⊗Y +Y ⊗X to be well-defined, we require

that if γ ∈ KGL2(K) is such that γ(X⊗Y ) = 0, then γ(X⊗Y +Y ⊗X) = 0.

For concreteness, consider the element

γ =

(
1 1

0 1

)
+

(
0 1

1 1

)
−
(

1 0

1 1

)
−
(

1 1

1 0

)
∈ KGL2(K).

The coefficient of, for example, X⊗X in γ(X⊗Y ) is given by evaluating the

monomial x1,1x1,2 on γ: the coefficient is 1 + 0 + 0− 1 = 0, as this monomial

vanishes on γ. Moreover, γ(X ⊗ Y ) = 0, precisely because every monomial

of the form xi1,1xi2,2 vanishes on γ. Since the polynomials representing the

action on X ⊗ Y + Y ⊗X are linear combinations of monomials of this form,

we have γ(X ⊗ Y + Y ⊗X) = 0 as required.

Proposition 6.10. Suppose K is infinite and n > r. There is an isomor-

phism of functors

F(−) ∼= HomKGLn(K)(E
⊗r,−)

on the category of polynomial representations of KGLn(K) of degree r.
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Proof. Given a KGLn(K)-module V and an element v ∈ V(1r,0n−r), let

ηV (v) : E⊗r → V be the unique GLn(K)-equivariant map sending X[r] 7→
v, whose existence is verified in Lemma 6.8. This makes ηV : F(V ) →
HomKGLn(K)(E

⊗r, V ) a K-linear map. This map is clearly injective; it is

surjective because given any GLn(K)-equivariant map χ : E⊗r → V , diagonal

matrices act on the element χ(X[r]) as they do on X[r], so χ(X[r]) ∈ V(1r,0n−r)

and χ = ηV (χ(X[r])).

We claim that the map ηV respects the action of Sr. We have

ηV (σv)(X[r]) = σv = gσv

by the definition of the action of Sr on the weight space F(V ). Meanwhile

by definition of the action of Sr on the hom space, we have

(σηV (v))(X[r]) = ηV (v)(X[r] · σ) = ηV (v)(gσX[r]) = gσv

as required.

It remains only to observe that the following diagram commutes, where

V, V ′ are KGLn(K)-modules and ϕ : V → V ′ is a GLn(K)-equivariant map.

F(V ) HomKGLn(K)(E
⊗r, V )

F(V ′) HomKGLn(K)(E
⊗r, V ′)

ηV

F(ϕ) ϕ◦−
ηV ′

Indeed the image of an element v ∈ F(V ) under either composition in the

diagram is the map sending X[r] 7→ ϕ(v). �

Remark 6.11. Proposition 6.10 claims an isomorphism between functors

on the category of polynomial representations of degree r. As observed below

Definition 6.5, the definition of F extends to all polynomial representations,

but F vanishes on polynomial representations of degree r′ 6= r. Likewise

the functor HomKGLn(K)(E
⊗r,−) vanishes on polynomial representations of

degree r′ 6= r: the module E⊗r is polynomial of degree r, so if there exists

a nonzero GLn(K)-equivariant map f : E⊗r → V , then im f 6 V is also

polynomial of degree r.
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Definition 6.12 (Left-adjoint inverse Schur functor). The left-adjoint in-

verse Schur functor Gn⊗ is the functor from the category of left KSr-modules

to the category of left KGLn(K)-modules defined by

Gn⊗(−) = E⊗r ⊗KSr −.

We suppress the dependence of Gn⊗ on n except where there is need to

emphasise it. Note that K infinite and n > r are not required here.

The functor G⊗ is left-adjoint to F by the tensor-hom adjunction. We

see next that the functor G⊗ is right-inverse to F (though it is not in general

a left-inverse).

Proposition 6.13. Suppose K is infinite. The image G⊗(U) of a KSr-

module U is polynomial of degree r.

Proof. Let U be a KSr module, suppose d = dimU , and choose a basis

u1, . . . , ud of U . Define a map by

(E⊗r)⊕d → G⊗(U)

(x1, . . . , xd) 7→ x1 ⊗ u1 + . . .+ xd ⊗ ud

for xi ∈ E⊗r. This is a surjective map of KGLn(K)-modules, so G⊗(U)

is a quotient of (E⊗r)⊕d. Since (E⊗r)⊕d is polynomial of degree r (by

Proposition 5.6(ii),(iii)), so too is G⊗(U) (by Proposition 5.6(i)). �

Proposition 6.14 (cf. [EGS08, (6.2d)]). Suppose K is infinite and n > r.

The functor G⊗ is right-inverse to the functor F (that is, there is a natural

isomorphism FG⊗ ∼= id of functors on the category of KSr-modules).

Proof. Let εU : U → FG⊗(U) be the map defined by

εU : U → (E⊗r ⊗KSr U)(1r,0n−r)

u 7→ X[r] ⊗ u

for u ∈ U . Indeed the image lies in the required weight space because

X[r] ∈ (E⊗r)(1r,0n−r), and a matrix which acts like a scalar on X[r] has the

same action on X[r] ⊗ u. It is clear that εU is K-linear and Sr-equivariant.
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To see that εU is injective, consider the Sr-balanced K-bilinear form

defined by K-linear extension of

E⊗r × U → U

(Xi1 ⊗ · · · ⊗Xir , u) 7→

σu if (i1, . . . , ir) = (1, . . . , r) · σ,

0 otherwise.

Since this form is nonzero on (X[r], u) for u 6= 0, the universal property of

the tensor product requires that X[r] ⊗ u 6= 0 for u 6= 0.

We next show that εU is also surjective. Let v ∈ (E⊗r ⊗KSr U)(1r,0n−r),

and we are required to show that v can be written in the form X[r] ⊗ u for

some u ∈ U . Using the action of Sr to order the left-hand tensor factors,

it is clear that we can write v =
∑

16i16...6ir6nXi1 ⊗ · · · ⊗Xir ⊗ ui1,...,ir for

some elements ui1,...,ir ∈ U . We claim that the only nonzero summand is

X[r] ⊗ u1,...,r.

We first use the universal property of the tensor product to show that

the nonzero summands of v are K-linearly independent. For each tuple

(i1, . . . , ir) such that Xi1 ⊗ · · · ⊗Xir ⊗ ui1,...,ir 6= 0, there exists some abelian

group A and some Sr-balanced K-bilinear form 〈−,−〉 : E⊗r × U → A such

that 〈Xi1 ⊗ · · ·⊗Xir , ui1,...,ir〉 6= 0; define a new Sr-balanced K-bilinear form

〈−,−〉′ : E⊗r × U → A by

〈Xj1 ⊗ · · · ⊗Xjr , u〉′ =

〈Xi1 ⊗ · · · ⊗Xir , u〉 if {i1, . . . , ir} = {j1, . . . , jr},

0 otherwise,

extended K-linearly. By evaluating the induced map E⊗r ⊗KSr U → A

of abelian groups on any linear combination of the nonzero summands

of v, we see that the linear combination is zero only if the coefficient of

Xi1 ⊗ · · · ⊗Xir ⊗ ui1,...,ir is zero.

To recognise the nonzero summands of v we consider the action of diagonal

matrices. Pick m ∈ [r] and α ∈ K with α 6∈ {0, 1}, and let g ∈ GLn(K) be

the diagonal matrix with gm,m = α and gi,i = 1 for all other i ∈ [n]. Then

gv =
∑

16i16...6ir6n

α|{ a∈[r] | ia=m }|Xi1 ⊗ · · · ⊗Xir ⊗ ui1,...,ir .
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Since v is in the (1r, 0n−r)-weight space, we have also gv = αv. Thus by

K-linear independence of the summands, we have that if Xi1 ⊗ · · · ⊗Xir ⊗
ui1,...,ir 6= 0 then α = α|{ a∈[r] | ia=m }|, and hence |{ a ∈ [r] | ia = m }| > 1.

Since this holds for all m ∈ [r], we have that the only nonzero summand of v

is X[r] ⊗ u1,...,r, as required.

Finally we need only observe that the following diagram commutes, where

U,U ′ are KSr-modules and ψ : U → U ′ is a Sr-equivariant map.

U FG⊗(U)

U ′ FG⊗(U ′)

εU

ψ id⊗ψ
εU′

Indeed the image of an element u ∈ U under either composition in the

diagram is the element X[r] ⊗ ψ(u). �

Remark 6.15. By Proposition 6.10, the functor G⊗ is, of course, also

right-inverse to the functor HomKGLn(K)(E
⊗r,−). Provided n > r, this

isomorphism of functors can in fact be shown for any field K 6= F2, not

necessarily infinite (whereas the definition of F requires K to be infinite).

The natural isomorphism of KSr-modules

U ∼= HomKGLn(K)(E
⊗r, E⊗r ⊗KSr U)

is given by sending an element u ∈ U to the map −⊗ u (that is, the map

determined by X[r] 7→ X[r]⊗u). This is easily shown to be Sr-equivariant by

writing the action of Sr in terms of permutation matrices in GLn(K). The

proofs of injectivity and surjectivity require essentially the same arguments

as the proof of Proposition 6.14.

The assumption that K 6= F2 is essential here, because otherwise the only

diagonal matrix is the identity matrix and hence maps which do not preserve

powers of the Xi are permitted. For example, take n = r = 2 and U the

trivial representation of S2. Then G⊗(U) = E⊗2 ⊗KS2 U
∼= Sym2E, and so

the image of the composition of our functors is HomKGL2(K)(E
⊗2,Sym2E).

We claim that that this module is 2-dimensional when K = F2, and in

particular not isomorphic to the 1-dimensional module U . Indeed, writing



6. THE SCHUR FUNCTOR AND ITS INVERSES 77

X = X1 and Y = X2, consider the linear map defined by

E⊗2 → Sym2E

X ⊗X 7→ X2

X ⊗ Y 7→ X2 + Y 2

Y ⊗X 7→ X2 + Y 2

Y ⊗ Y 7→ Y 2

extended linearly. This map is easily verified to be GL2(F2)-equivariant,

and is not a scalar multiple of the canonical quotient map (and all GL2(F2)-

equivariant maps are linear combinations of these two maps).

6.3. Duality and the right-adjoint inverse Schur functor

The functor F also has a right-adjoint right-inverse. Once again the

adjunction is a case of the tensor-hom adjunction, this time with F playing

the role of the tensor product. However, we deduce the adjunction by

considering the interaction between duality and the functors F and G⊗; we

show that a certain hom-functor is right-adjoint to F , and deduce by the

uniqueness of adjunctions that F is isomorphic to a tensor product.

We first define the functor which we later show is right-adjoint and right-

inverse to F . To define this functor requires viewing the (KGLn(K),KSr)-

bimodule E⊗r instead as a (KSr,KGLn(K))-bimodule. We write E> for the

right natural representation of GLn(K), with left Sr-action given by place

permutation, both denoted �. Given x ∈ E, we denote the corresponding

element of E> by x>; the right GLn(K)-action on the natural basis is

X>i � g =
n∑
j=1

gi,jX
>
j = (g>Xi)

>

where g ∈ GLn(K). The left Sr-action is

σ � (X>i1 ⊗ · · · ⊗X>ir ) = X>i1σ ⊗ · · · ⊗X>irσ = ((Xi1 ⊗ · · · ⊗Xir) · σ−1)>
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where σ ∈ Sr. The Sr-action on the generator X>[r] can be written in terms

of the permutation matrices:

σ �X>[r] = X>[r] � gσ = (g>σX[r])
>.

Definition 6.16 (Right-adjoint inverse Schur functor). The right-adjoint

inverse Schur functor GnHom is the functor from the category of left KSr-

modules to the category of left KGLn(K)-modules defined by

GnHom(−) = HomKSr((E
>)⊗r,−).

We suppress the dependence of GnHom on n except where there is need to

emphasise it. Note that K infinite and n > r are not required here.

Proposition 6.17 (cf. [CHN10, §2.2]).

(i) There is a natural isomorphism of functors G⊗(−)◦ ∼= GHom(−∗).
(ii) Suppose K is infinite and n > r. Then there is a natural isomorphism

of functors F(−◦) ∼= F(−)∗.

Proof. [(i)] Given a KSr-module U , by the tensor-hom adjunction there

is a natural isomorphism of abelian groups

HomK(E⊗r ⊗KSr U,K) HomKSr

(
(E>)⊗r,HomK(U,K)

)
G⊗(U)◦ GHom(U∗)

∼=

= =

which sends a map ϕ ∈ HomK(E⊗r ⊗KSr U,K) to the map sending x> ∈
(E>)⊗r to ϕ(x⊗−). We claim that this is also GLn(K)-equivariant. Indeed,

acting by an element g ∈ GLn(K) before or after applying the adjunction to

a map ϕ yields the map sending x> ∈ (E>)⊗r to the map ϕ((g>x)⊗−).

[(ii)] Given a KGLn(K)-module V , note that as K-vector spaces we

have F(V ◦) ⊆ HomK(V,K) and that F(V )∗ = HomK(V(1r,0n−r),K). Let

θV : F(V ◦)→ F(V )∗ be the restriction map (sending a function f ∈ F(V ◦)

to the function f |V(1r,0n−r)). This is clearly K-linear and natural in V .

A permutation σ ∈ Sr acts on a function f ∈ F(V ◦) by multiplication

by the permutation matrix gσ, which by definition of the contravariant dual

is given by precomposing with the transpose matrix:

(σf)(v) = (gσf)v = f(g>σ v).
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Meanwhile σ acts on the function θV (f) ∈ F(V )∗ by precomposing with

the inverse permutation, which acts by multiplication by the corresponding

permutation matrix:

(σθV (f))(v) = θV (f)(σ−1v) = θV (f)(g−1
σ v).

The transpose of a permutation matrix is its inverse, so θV is Sr-equivariant.

To see that θV is bijective, choose a basis v1, . . . , vc for V(1r,0n−r), extend

to a basis v1, . . . , vd for V , and let v∗1, . . . , v
∗
d denote the dual basis. With

respect to these bases, a diagonal matrix acts on V ◦ exactly as it does on V ,

and so v∗1, . . . , v
∗
c is a basis for (V ◦)(1r,0n−r). It is then clear that θV is both

injective and surjective. �

This is sufficient to deduce that GHom is right-inverse to F .

Proposition 6.18. Suppose K is infinite.

(i) The image GHom(U) of a KSr-module U is polynomial of degree r.

(ii) Suppose n > r. The functor GHom is right-inverse to F (that is, there

is a natural isomorphism FGHom
∼= id of functors on the category of

KSr-modules).

Proof. By Proposition 6.17(i), we have GHom(U) ∼= G⊗(U∗)◦; the mod-

ule G⊗(U∗) is polynomial of degree r by Proposition 6.13, and hence so is its

contravariant dual by Proposition 5.6(iv). This proves (i). Part (ii) follows

from G⊗ being right-inverse to F (Proposition 6.14) and using both parts of

Proposition 6.17. �

We next show that GHom is right-adjoint to F . We require the following

lemma.

Lemma 6.19. Let G be a group and let U, V be KG-modules. There is a

natural isomorphisms of abelian groups

HomKG(V,U) ∼= HomKG(U∗, V ∗).

If G is a matrix group closed under transposition, the same map defines a nat-

ural isomorphism when the dual −∗ is replaced by the contravariant dual −◦.
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Proof. Choose bases u1, . . . , uc and v1, . . . , vd for U and V , and let

u∗1, . . . , u
∗
c and v∗1, . . . , v

∗
d denote the dual bases for U∗ and V ∗ respectively.

Let R be the d× c matrix representing a G-equivariant map U → V with

respect to the given bases. We claim that the map U∗ → V ∗ represented by

the transpose R> with respect to the given bases is G-equivariant. Indeed,

we have by assumption that RρU (g) = ρV (g)R for all elements g ∈ G; taking

transposes and inverting g, we have ρU (g−1)>R> = R>ρV (g−1)> for all

g ∈ G. Since ρU∗(g) = ρU (g−1)> and likewise for V , this is the requirement

that the map represented by R> is G-equivariant.

Matrix transposition thus yields the required isomorphism of abelian

groups, and naturality is easily verified. When G is a matrix group, the same

argument with g> occurring in place of g−1 establishes the statement for

contravariant duals. �

Proposition 6.20. Suppose K is infinite and n > r.

(i) The functor GHom is right-adjoint to F .

(ii) There is a natural isomorphism of functors

F(−) ∼= (E>)⊗r ⊗KGLn(K) −.

Proof. The functor GHom is right-adjoint to (E>)⊗r ⊗KGLn(K) − by

the tensor-hom adjunction, so part (ii) follows from (i) by uniqueness of

adjunctions.

For part (i), let U be a KSr-module and let V be a KGLn(K)-module.

Consider the following chain of natural isomorphisms of abelian groups:

HomKGLn(K)(V,GHom(U))

∼= HomKGLn(K)(V,G⊗(U∗)◦) (by Proposition 6.17(i))

∼= HomKGLn(K)(G⊗(U∗), V ◦) (by Lemma 6.19)

∼= HomKSr(U
∗,F(V ◦)) (as G⊗ is left-adjoint to F)

∼= HomKSr(U
∗,F(V )∗) (by Proposition 6.17(ii))

∼= HomKSr(F(V ), U) (by Lemma 6.19).

This is precisely the requirement that GHom is right-adjoint to F . �
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Finally in this section we record exactness properties of the Schur functor

and its inverses.

Proposition 6.21. The functor G⊗ is right exact and the functor GHom is

left exact. The functor F is exact (when K is infinite and n > r).

Proof. These are general properties of tensor and hom functors (or

more generally of adjoints), using Proposition 6.10 and Proposition 6.20(ii)

to view F as tensor functor and a hom functor (that is, both a left- and

right-adjoint). �

Remark 6.22. The Schur functor is usually described in the language

of the Schur algebra S, where the definition as a weight space is easily

seen to be equivalent to multiplication by a certain idempotent. Call this

idempotent e. Verifying that the Schur functor is isomorphic to a tensor

product and to a hom space is straightforward using this characterisation: the

roles of E⊗r and (E>)⊗r are replaced by Se and eS, and the isomorphisms

HomS(Se,−) ∼= e(−) ∼= eS⊗S− are clear. The tensor-hom adjunction yields

the left-adjoint inverse Se⊗eSe− and the right-adjoint inverse HomeSe(eS,−).

Our treatment, aside from bypassing the need to construct the Schur

algebra, gives constructions of the inverse Schur functors which are valid for

any field K and any choice of parameters n and r. It gives two candidates for

such a construction of the Schur functor itself: HomKGLn(K)(E
⊗r,−) and

(E>)⊗r⊗KGLn(K)−. The results of this chapter show that these two functors

are isomorphic to each other and to F when K is infinite and n > r; they

are dual to each other, analogously to GHom and G⊗ in Proposition 6.17(i);

and each is left-inverse to its adjoint inverse Schur functor provided K 6= F2

and n > r (see Remark 6.15). It would be interesting to identify whether

these functors are isomorphic in all cases.
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7. Dimension reduction functor

In this section we consider connections between polynomial represen-

tations of GLn(K) for different values of n, when K is infinite. We use a

functor which was defined in the context of the Schur algebra by Green

[EGS08, Section 6.5]; here we simply multiply by the appropriate idempotent

in Matn(K).

Recall that the algebra Matn(K) of all n× n matrices with entries in K

acts on any polynomial representation of GLn(K) by extending the domain

of the defining polynomials (see Remark 5.8).

Let n′ 6 n, and let ε =
(
In′ 0
0 0

)
∈ Matn(K), a block matrix, where In′ is

the n′ × n′ identity matrix. Note that ε is an idempotent in Matn(K) and

that the subalgebra εKGLn(K)ε is isomorphic to KGLn′(K). Given V a

polynomial representation of GLn(K), the image εV of V under the action

of ε is a polynomial representation of GLn′(K) with the same representing

polynomials (with the variables with labels greater than n′ set to 0).

Definition 7.1 (Dimension reduction functor). The dimension reduction

functor from n to n′ is the functor ε(−) from the category of polynomial

representations of GLn(K) of degree r to the category of polynomial repre-

sentations of GLn′(K) of degree r defined by left multiplication by ε.

Proposition 7.2.

(i) The dimension reduction functor ε(−) is exact.

(ii) For any KGLn(K)-module V , we have ε∇λ(V ) ∼= ∇λ(εV ).

(iii) For any KSr-module U , we have εGn⊗(U) ∼= Gn′⊗ (U).

Proof. Part (i) is a property of any functor defined by multiplication by

an idempotent (see [EGS08, (6.2a)]). Part (ii) is clear from the construction

of ∇λ; the case of V = E is noted in [EGS08, Remark following (6.5f)]. For

part (iii), let E′ denote the natural KGLn′(K)-module, and observe that

εE ∼= E′ and that furthermore ε(E⊗r) ∼= (E′)⊗r; the claim then follows by

the definition of G⊗. �
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This proposition tells us that, informally, the structure of Gn⊗(U) for a

KSr-module U is independent of n. More precisely, we have the following

corollary.

Corollary 7.3. Suppose K is infinite. Let U be a KSr-module, and suppose

µ = (µ(1), . . . , µ(l)) is the sequence of labels for the simple modules in a

composition series for Gn⊗(U) for some fixed n > r. Then µ is also the

sequence of labels for the simple modules in a composition series for Gn′⊗ (U)

for any n′ (after excluding the labels for zero modules).



CHAPTER III

Modular plethystic isomorphisms

In this chapter, we establish or rule out the existence of several plethystic

isomorphisms – isomorphisms between modules of the form ∇µ∇λE and

those with a ∆ in place of a ∇ – over the two-by-two general linear group

GL2(K) where K is an arbitrary field. We give explicit maps in the case of

existence; these results generalise classical results, but require dualities that

were not present in characteristic 0.

The results of this chapter are taken from the author’s joint work with

Mark Wildon, [McDW22]; in the case of the Wronskian isomorphism we

prove a more general result (see below).

Each of the four sections in this chapter is dedicated to one of the four

plethystic (non-)isomorphisms described below. The first two sections are

logically independent; the latter two make use of the results of the previous

sections.

Complementary partition isomorphism. King [Kin85, §4.2] used the character

theory of SU2 to prove that, if λ◦ is the complement of the partition λ in a

rectangle with l + 1 rows, then

∇λ SymlE ∼= ∇λ◦ SymlE

where E is the natural representation of the special linear group SL2(C).

In §8 we generalise this to the modular case, and furthermore to arbitrary

groups, obtaining the following theorem.

Theorem A (Complementary partition isomorphism). Let G be a group,

and let V be a d-dimensional representation of G. Let c ∈ N, and let λ be a

partition with 0 6 λ1 6 c and 0 6 λ′1 6 d. Let λ◦ denote the box-complement

of λ in the d× c rectangle. Then there is an isomorphism

∇λV ∼= ∇λ◦V ∗ ⊗ (detV )⊗c

84
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where detV ∼=
∧d V .

Our map is explicit, sending a polytabloid e(t) of a tableau t to (plus

or minus) the polytabloid e(t◦) of the ‘complementary’ tableau t◦ (see Def-

inition 8.5 for the precise definition including the sign, and an illustrative

example after it).

Two interesting special cases of this theorem are that
∧l V ∼=

∧d−l V ∗

and ∇(d,d−1,...,1)V ∼= ∇(d,d−1,...,1)V ∗ whenever detV is trivial – an assumption

which holds, for instance, when V is obtained by restricting a polynomial

representation of GL2(K) to a subgroup of SL2(K). Thus we obtain (Corol-

lary 8.3) an explicit isomorphism
∧l Syml+m−1E ∼=

∧m Syml+m−1E, where

E is the natural representation of SL2(K). More generally, we obtain as a

corollary of Theorem A the following modular version of King’s plethystic

isomorphism.

Corollary B. Let l, c ∈ N0, and let λ be a partition with λ′1 6 l + 1 and

λ1 6 c. Let λ◦ denote the complement of λ in the (l + 1)× c rectangle. Let

E be the natural 2-dimensional representation of SL2(K). Then there is an

isomorphism

∇λ SymlE ∼= ∇λ◦ SymlE.

Wronskian isomorphism. The Wronskian isomorphism is the classical result

Symm SymlE ∼=
∧m Syml+m−1E

for m, l ∈ N, where E is the natural representation of SL2(C) (see for instance

[AC07, §2.5]). Our explicit modular version is as follows, where {X,Y } is

the canonical basis for the natural representation E of GL2(K).

Theorem C (Characteristic-free Wronskian isomorphism). Let m, l ∈ N.

Let K be a field and let E be the natural 2-dimensional representation of

GL2(K). There is an isomorphism of GL2(K)-representations

Symm SymlE ⊗ (detE)⊗m(m−1)/2 ∼=
∧m Syml+m−1E
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given by restriction of the K-linear map (SymlE)⊗m → ∧m Syml+m−1E

defined on the canonical basis of (SymlE)⊗m by

m⊗
j=1

XijY l−ij 7→
m∧
j=1

Xij+m−jY l−ij+j−1.

Recently, [AFP+19, §3.4] also proved a modular version of this isomor-

phism, namely Symm SymlE
∼=
∧l Syml+m−1E where E is the natural rep-

resentation of SL2(K). This isomorphism is equivalent to the existence of the

isomorphism in Theorem C: using Corollary 8.3 (stated also in [AFP+19]),

their codomain
∧l Syml+m−1E is isomorphic to

∧m(Syml+m−1E)∗ and

hence by Proposition 3.3 to (
∧m Syml+m−1E)∗, the dual of our right-hand

side; meanwhile by the duality of symmetric powers and Proposition 3.2,

their domain Symm SymlE is isomorphic to (Symm SymlE)∗, the dual of our

left-hand side. The isomorphism in [AFP+19] is constructed indirectly using

maps into, and out of, the ring of symmetric functions; the proof that it is

SL2(K)-invariant requires Pieri’s rule and a somewhat intricate inductive

argument. By contrast our isomorphism has a simple one-line definition.

We in fact prove a result which is more general than that of [AFP+19]

and [McDW22], using different methods. We show that there is an injective

map

Symm SymlE ⊗ (detE)mm/n ↪→ ∧m Syml+mE

where m =
(
m+n−1

m

)
and E is the natural representation of the n×n general

linear group GLn(K) (and that when n = 2 the map is a bijection, and is

the map described in Theorem C). We prove this in §9.

Hermite reciprocity. Known also as the Cayley–Sylvester formula, Hermite

reciprocity was discovered by the eponymous mathematicians in the setting

of invariant theory. In our language it states that

Symm SymlE ∼= Syml SymmE

for all m, l ∈ N, where E is the natural 2-dimensional representation of the

general linear group GL2(C) ([FH04, Exercise 6.18]). Our modular version,
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which we obtain in §10 by composing our Wronskian isomorphism with a

special case (Corollary 8.3) of the complementary partition isomorphism, is

as follows.

Theorem D (Characteristic-free Hermite reciprocity). Let m, l ∈ N and let

E be the natural 2-dimensional representation of GL2(K). Then

Symm SymlE ∼= Syml SymmE.

This result is obtained, without an explicit description of the maps,

in a similar manner in [AFP+19, Remark 3.2]. We illustrate our explicit

composition in Example 10.1.

It is well known (as described in §3.2) that when K has characteristic p

and m 6 p−1, the functors Symm and Symm are naturally isomorphic. Thus

Theorem D implies that Symm SymlE ∼= Syml SymmE when m 6 p − 1.

This special case of the corollary was first proved by Kouwenhoven [Kou90b,

pp. 1699–1700], where it is also shown that Symp SymlE 6∼= Syml SympE if

p < l < p(p− 1). In Proposition 11.14 we give infinitely many examples of

such non-isomorphisms, considering different combinations of duality, thus

demonstrating that Theorem D is the unique modular generalisation of

Hermite reciprocity.

Conjugate hook partition isomorphism. Another classical result, due to King

[Kin85, §4] (reproved as the main theorem in [CP16], and proved in a stronger

version in [PW21, Theorem 1.3]) states that under certain conditions on the

partition λ, there is an isomorphism

∇λ Symm+λ′1−1E ∼= ∇λ′ Symm+λ1−1E,

where E is the natural representation of SL2(C) and m ∈ N0. Hook partitions

satisfy the conditions, and so we have

∇(a+1,1b) Symm+bE ∼= ∇(b+1,1a) Symm+aE
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for all a, b,m ∈ N0. By the final theorem of this chapter, proved using the

new modular invariant introduced in Definition 11.3, this isomorphism has,

in general, no modular analogue, even after considering all possible dualities.

Theorem E (Obstructions to the conjugate hook partition isomorphism).

Let α, β, ε ∈ N with α < β < ε. If K has characteristic p and |K| >
1 + 2(pε + pβ)(pα + pβ + 1)− pα(pα + 1), then the eight representations of

SL2(K) obtained from ∆(pα+1,1p
β

) Sympε+pβ E by any combination of

• replacing ∆ with ∇,

• replacing Sym− with Sym−,

• swapping α and β,

are pairwise non-isomorphic.
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8. Complementary partition isomorphism

This section proves the following theorem and its corollaries.

Theorem A (Complementary partition isomorphism). Let G be a group,

and let V be a d-dimensional representation of G. Let c ∈ N, and let λ be a

partition with 0 6 λ1 6 c and 0 6 λ′1 6 d. Let λ◦ denote the box-complement

of λ in the d× c rectangle. Then there is an isomorphism

∇λV ∼= ∇λ◦V ∗ ⊗ (detV )⊗c

where detV ∼=
∧d V .

We adopt the notation of this theorem throughout. Additionally, write

λ◦′ for (λ◦)′, and let B = {v1, . . . , vd} be an ordered K-basis for V and let

B∗ = {v∗1, . . . , v∗d} be the (ordered) dual basis for V ∗.

Our strategy is to define a G-equivariant map
∧λ′ V → ∧λ◦′ V ∗ ⊗

(detV )⊗c and show that its image on GRλ(V ) is contained in GRλ
◦
(V ∗) ⊗

(detV )⊗c. The map will therefore descend to a G-equivariant map ∇λV →
∇λ◦V ∗ ⊗ (detV )⊗c, which is bijective by counting dimensions.

8.1. Map between exterior powers

We begin by constructing a K-linear isomorphism
∧l V → ∧d−l V ∗ for

0 6 l 6 d; we extend this to a K-linear isomorphism
∧λ′ V → ∧λ◦′ V ∗ in

§8.2. We show that, accounting for powers of determinants, theses maps are

also KG-equivariant.

Let Π ⊆ Sd be the set of permutations of [d] which preserve the relative

orders within each subset {1, . . . , l} and {l + 1, . . . , d}; that is, σ ∈ Π if and

only if 1σ < . . . < lσ and (l + 1)σ < . . . < dσ. Then we can write the

standard basis of
∧l V as { v1σ ∧ · · · ∧ vlσ | σ ∈ Π }.

Definition 8.1. Let ψ :
∧l V → ∧d−l V ∗ be the K-linear bijection defined

by

ψ(v1σ ∧ · · · ∧ vlσ) = sgn(σ) v∗(l+1)σ ∧ · · · ∧ v∗dσ
for each σ ∈ Π (and hence any σ ∈ Sd). Furthermore, let ψ̄ :

∧l V →∧d−l V ∗ ⊗ detV be the K-linear bijection defined by ψ̄(x) = ψ(x)⊗ 1.
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Let { (vi1 ∧ · · · ∧ vil)∗ | 1 6 i1 < . . . < il 6 d } be the basis of (
∧l V )∗

dual to the basis { vi1 ∧ · · · ∧ vil | 1 6 i1 < . . . < il 6 d } for
∧l V .

Proposition 8.2. The map ψ̄ is G-equivariant.

Proof. Let ε = (v1 ∧ · · · ∧ vd)∗ be the unique element of the canonical

basis of (
∧d V )∗. Our strategy is to show that ψ is the image of ε under a

sequence of G-equivariant maps. Assuming this is done, since (
∧d V )∗ ∼=

(detV )−1, for each g ∈ G and x ∈ ∧l V we have (g · ψ)(x) = (det g−1)ψ(x),

as required.

In the following steps we apply to ε the comultiplication map (
∧d V )∗ →

(
∧l V ⊗ ∧d−l V )∗ with respect to the standard bases introduced above;

compose with the standard isomorphism (U ⊗W )∗ ∼= U∗ ⊗W ∗; and then

apply the isomorphism (
∧r V )∗ ∼=

∧r V ∗ from Proposition 3.3 on the right-

hand factor:

ε 7→
∑
σ∈Π

sgn(σ)(v1σ ∧ · · · ∧ vlσ ⊗ v(l+1)σ ∧ · · · ∧ vdσ)∗

7→
∑
σ∈Π

sgn(σ)(v1σ ∧ · · · ∧ vlσ)∗ ⊗ (v(l+1)σ ∧ · · · ∧ vdσ)∗

7→
∑
σ∈Π

sgn(σ)(v1σ ∧ · · · ∧ vlσ)∗ ⊗ v∗(l+1)σ ∧ · · · ∧ v∗dσ.

Finally we apply the standard isomorphism U∗ ⊗ W ∼= HomK(U,W ) to

obtain the K-linear isomorphism

v1σ ∧ · · · ∧ vlσ 7→ sgn(σ) v∗(l+1)σ ∧ · · · ∧ v∗dσ

which is precisely the map ψ. �

An alternative proof of Proposition 8.2 is possible; see Remark 8.4 below.

Proposition 8.2 establishes the case of Theorem A when c = 1 and λ

is a column. From this, we can already obtain the following plethystic

isomorphism for GL2(K).

Corollary 8.3. Let l,m ∈ N. Let E denote the natural 2-dimensional

representation of GL2(K). Then∧l Syml+m−1E ∼=
∧m Syml+m−1E ⊗ (detE)⊗

1
2

(l+m−1)(l−m).



8. COMPLEMENTARY PARTITION ISOMORPHISM 91

Proof. It suffices to show that
∧l Syml+m−1E ∼=

∧m Syml+m−1E as

representations of SL2(K) (by Proposition 5.10). Indeed, suppose G =

SL2(K), d = l + m and V = Syml+m−1E. By Proposition 8.2, ψ̄ is an

isomorphism
∧l V ∼=

∧m V ∗. But V ∗ ∼= Syml+m−1E by Propositions 3.2

and 3.7 (and the observation that E ∼= E◦). �

Remark 8.4. We discuss, with a connection to combinatorics, an alternative

proof that the map ψ̄ is G-equivariant (as seen in Proposition 8.2). The

matrices by which an element g ∈ G acts on
∧l V and

∧d−l V ∗ can be com-

puted directly; their entries are minors of the matrices ρV (g) and ρV (g−1)>.

Recall a minor of a matrix is a determinant of a submatrix: given a d× d
matrix M and subsets A,B ⊆ [d], let M [A,B] be the submatrix obtained

by retaining only the rows and columns indexed by elements of A and B

respectively; the corresponding minor of M is det(M [A,B]).

Our basis for
∧l V is labelled by l-subsets of [d]; when g acts on the

basis element labelled by an l-subset A, the coefficient of the basis element

labelled by the l-subset B is the minor

ρ∧l V (g)A,B = det
(
ρV (g)[A,B]

)
.

Our basis for
∧d−l V ∗ is likewise labelled by (d− l)-subsets of [d], which are

in correspondence with the l-subsets via complementation −c in [d]. When g

acts on the basis element labelled by the complement Ac of an l-subset A,

the coefficient of the basis element labelled by the complement Bc of the

l-subset B is the minor

ρ∧d−l V ∗(g)Ac,Bc = det
(
ρV (g−1)>[Ac, Bc]

)
.

We require that these matrices ρ∧l V (g) and ρ∧d−l V ∗(g) are equal, up to a

factor of the determinant of ρV (g) and the sign in the map ψ̄. Indeed this is

the case by Jacobi’s complementary minor formula [CSS13, Lemma A.1(e),

p. 96], which states that for any d× d matrix M and any subsets A,B ⊆ [d],

there is equality

det
(
M [A,B]

)
= (−1)ΣA+ΣB det(M) det

(
M−>[Ac, Bc]

)
where ΣA, ΣB denote the sums of the entries of A and B.
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This approach is of particular interest in the case G = GL2(K) and

V = Symd−1E of Corollary 8.3. When g is an elementary transvection (that

is, has 1s on the diagonal and a unique nonzero off-diagonal entry), the

entries of ρV (g) are binomial coefficients (corresponding to the choice of

factors in which the off-diagonal entry is taken when expanding the product),

and the required equality between minors (that is, between the entries of

ρ∧l V (g) and ρ∧d−l V ∗(g)) is

det

((
b

a

))
a∈A,b∈B

= det

((
a′

b′

))
a′∈Ac,b′∈Bc

for subsets A,B ⊆ [d− 1]0. This identity, as well as being a consequence of

Jacobi’s formula, was proven combinatorially by Gessel and Viennot [GV85,

Proposition 7] using a lattice path counting argument now known as the

Lindström–Gessel–Viennot lemma (see [BC05] for an illuminating account

of this lemma).

Motivated by the occurrence of these determinants in the action of

GL2(K) on symmetric powers, in [McD23] the author lifted the binomial

identity above to q-binomials and to symmetric polynomials, and generalised

further by allowing the number of indeterminates to vary, obtaining a duality

theorem for flagged Schur polynomials. The proof again uses the Lindström–

Gessel–Viennot lemma; the author shows that Jacobi’s complementary minor

formula is insufficient to prove the full generalisation.

8.2. Map between partition-labelled exterior powers

We use the map ψ :
∧l V → ∧d−l V ∗ of §8.1 to define a map

∧λ′ V →∧λ◦′ V ∗ by applying ψ to each tensor factor. We describe this map explicitly

using column tabloids (see §1.5). The group action on the basis vectors will

not be needed for the rest of this section, and so for convenience we will view

B = B∗ = [d].

Define a bijection CSYT[d](λ) → CSYT[d](λ
◦) as follows. For each

1 6 j 6 s, let j◦ = c + 1 − j and observe that column j◦ of λ◦ has length

d − λ′j (where we set λ′j = 0 if j exceeds the greatest part of λ). Given

a column standard tableau t ∈ CSYT[d](λ), let t◦ ∈ CSYT[d](λ
◦) be the
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column standard tableau whose entries in column j◦ are the the complement

in [d] of the entries of t in column j. Note that the assumption that t is

column standard is essential so that t◦ has d− λ′i specified entries in column

λ1 + 1− i.
Define the surplus of t to be S(t) =

∑
(i,j)∈[λ](t(i, j)− i), or equivalently

S(t) =
∑

b∈[λ] t(b)−
∑λ′1

i=1 iλi.

Definition 8.5. Let Ψ:
∧λ′ V → ∧λ◦′ V ∗ be the K-linear bijection defined

by

Ψ(|t|) = (−1)S(t)|t◦|

for t ∈ CSYT[d](λ). Furthermore, let Ψ̄ :
∧λ V → ∧λ◦ V ∗⊗ (detV )⊗c be the

K-linear bijection defined by Ψ̄(x) = Ψ(x)⊗ 1.

For example, suppose d = 3, c = 4 and λ = (3, 1) with Young diagram

. Then λ◦ = (4, 3, 1) with Young diagram . If t =
1 1 2
2

, then

S(t) = 0 + 0 + 1 + 0 = 6− 5 = 1 and

Ψ
( 1 1 2

2

)
= −

1 1 2 3

2 3 3

3

(where, as we are viewing B = B∗ = [d], the element i corresponds to the ith

basis vector of V or V ∗ as appropriate).

We claim that applying the appropriate ψ to the ith tensor factor of |t|
yields the (λ1 + 1 − i)th tensor factor of (−1)S(t)|t◦|, and hence by Propo-

sition 8.2 applied to each column in the d × c rectangle in turn, that the

map Ψ̄ is a KG-isomorphism. The only difficulty is verifying that the sign

arising from the maps on each factor is indeed given by the surplus of the

tableau; this is achieved in the following lemma. Recall that for l ∈ [d], the

set Π ⊆ Sd is the subset of permutations preserving the relative orders of

{1, . . . , l} and {l + 1, . . . , d}.

Lemma 8.6. Let σ ∈ Π ⊆ Sd. Then sgn(σ) = (−1)s(σ), where s(σ) =

−1
2 l(l + 1) +

∑l
i=1 iσ.
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Proof. We take l to be fixed and induct on d. If d = l, then σ is the

identity permutation and s(σ) = 0, establishing the base case.

Suppose d > l and consider the value of dσ. If dσ = d, then σ can be

viewed as an element of Π ⊆ Sd−1 and this does not change the value of s(σ),

so the inductive hypothesis gives the claim.

If dσ < d, let m > 1 be such that dσ = d − m. Then, by definition

of Π, we have that (l − c)σ = d − c for each 0 6 c 6 m − 1; that is,

the m largest elements of {1, . . . , d} appear in the set {1σ, . . . , lσ}. Let

τ = (d d−1 · · · d−m+1 d−m), an (m+ 1)-cycle. Observe that dστ = d,

and that στ preserves the relative orders of {1, . . . , l} and {l + 1, . . . , d}, so

στ ∈ Π. Then viewing στ as an element of Sd−1 as in the previous paragraph,

by the inductive hypothesis we have (−1)s(στ) = sgn(σ) sgn(τ). But the set

{1στ, . . . , lστ} differs from {1σ, . . . , lσ} only by the addition of d−m and

the removal of d, so s(σ) = s(στ) +m, and τ is an (m+ 1)-cycle so has sign

(−1)m. �

8.3. Column sorting permutations

We need to know how permuting the boxes of a tableau t affects the

image of its column tabloid under Ψ. The column sets of the resulting tabloid

are clear, and permuting boxes does not change the value of the surplus S(t),

but each column must be sorted into ascending order before the map t 7→ t◦

can be applied, and more work is required to identify the sign which arises.

Recall we view B = B∗ = [d], as we are now only interested in the linear

structure of the map.

Fix t ∈ CSYT[d](λ) and two columns 1 6 j < k 6 λ1. Let j◦ = c+ 1− j
and k◦ = c+ 1− k be the columns in λ◦ complementary to the columns j

and k in λ. Given a permutation τ ∈ S[λ], the support of τ , denoted supp τ ,

is the set of points which are not fixed by τ .

Let τ ∈ Scolj [λ]t colk[λ] be a product of disjoint transpositions of the form

(a b) where a ∈ colj [λ], b ∈ colk[λ], such that the boxes in the support of τ

have distinct entries in t. Suppose also that |t · τ | 6= 0; this precisely says

that, in t, no box in column j in the support of τ has an entry which appears



8. COMPLEMENTARY PARTITION ISOMORPHISM 95

in column k, and vice versa. Observe that for each box in the support

of τ , there is exactly one box in colj◦ [λ
◦] t colk◦ [λ

◦] containing in t◦ the

same entry: considering, for example, a box a ∈ colj [λ] in the support of τ ,

the entry t(a) does not appear in column k of t by the above assumptions,

and so appears precisely once in column k◦ of t◦ (and does not appear in

column j◦ of t◦ because it appears in column j of t). For a ∈ colj [λ] t colk[λ]

in the support of τ , denote this corresponding box (t◦)−1t(a). Then define

τ◦ ∈ Scolj◦ [λ◦]tcolk◦ [λ◦] by replacing in every transposition the box a with the

box (t◦)−1t(a).

It is clear that Ψ(|t · τ |) = ±|t◦ · τ◦|: by construction the permutation τ◦

swaps a pair of boxes between columns j◦ and k◦ if and only if the boxes

containing their entries are swapped between columns j and k by τ . We

claim that furthermore the correct sign is (−1)S(t). To prove this, we require

the following lemma.

Lemma 8.7. Let t ∈ CSYT[d](λ). Let x ∈ colj(t) and y ∈ [d] \ colj(t). Let

u be the tableau obtained from t by replacing in column j the entry x with

the entry y, and let u′ be the tableau obtained from t◦ by replacing in column

j◦ the entry y with the entry x. The unique place permutation in S[λ] which

sorts both column j of u and column j◦ of u′ has sign (−1)|x−y|−1.

Proof. Let Z = {min{x, y}+ 1, . . . ,max{x, y} − 1}. Column j of u is

sorted by a cycle of length 1 + |Z ∩ colj(t)|, while column j◦ of u′ is sorted

by a cycle of length 1 + |Z ∩ colj◦(t
◦)|. Let σ be the product of these disjoint

cycles; this is the unique permutation in S[λ] which sorts both u and u′. Then

σ has sign (−1)z where

z = |Z ∩ colj(t)|+ |Z ∩ colj◦(t
◦)|.

But by the definition of t◦ we have colj(t) t colj◦(t
◦) = [d]. Thus z = |Z| =

|x− y| − 1, as required. �

Observe that in Lemma 8.7 the sign of the column sorting permutation

depends only on the set {x, y}, and not on t (except through the requirement
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that x ∈ colj(t) and y 6∈ colj(t), which holds by hypothesis). Generalising,

we obtain the following lemma.

Lemma 8.8. Let t ∈ CSYT[d](λ). Let {x1, . . . , xr} ⊆ colj(t) and {y1, . . . , yr}
⊆ [d] \ colj(t). Let u be the tableau obtained from t by replacing in column

j each entry xi with the entry yi, and let u′ be the tableau obtained from t◦

by replacing in column j◦ each entry yi with the entry xi. The unique place

permutation in S[λ] which sorts both column j of u and column j◦ of u′ has

sign depending only on the pairs {xi, yi}, and not on t.

Proof. This follows by repeated application of Lemma 8.7. �

Proposition 8.9. Let t ∈ CSYT[d](λ). Let τ ∈ Scolj [λ]t colk[λ] be a product

of disjoint transpositions of the form (a b) where a ∈ colj [λ], b ∈ colk[λ],

such that the boxes in the support of τ have distinct entries in t. Suppose

|t · τ | 6= 0. Then Ψ(|t · τ |) = (−1)S(t)|t◦ · τ◦|.

Proof. As has already been recorded, Ψ(|t · τ |) = ±|t◦ · τ◦|, or equiva-

lently [d] \ colj(t · τ) = colj◦(t
◦ · τ◦) and [d] \ colk(t · τ) = colk(t

◦ · τ◦).
Let π ∈ Scolj [λ], ϕ ∈ Scolk[λ], π

′ ∈ Scolj◦ [λ◦], ϕ
′ ∈ Scolk◦ [λ

◦] be the unique

place permutations which sort, respectively, columns j and k of t · τ and

columns j◦ and k◦ of t◦ · τ◦. By Lemma 8.8, the signs sgn(ππ′) and sgn(ϕϕ′)

depend only on the pairs {t(a), t(b)} where (a b) are the disjoint transpositions

comprising τ , and therefore these signs are equal.

The tableaux t · τπϕ and t◦ · τ◦π′ϕ′ are column standard, their column

sets are complementary as noted above, and both have surplus equal to S(t).

Thus we have Ψ(|t · τπϕ|) = (−1)S(t)|t◦ · τ◦π′ϕ′|, and hence

Ψ(|t · τ |) = sgn(πϕ)Ψ(|t · τπϕ|)

= sgn(πϕ)(−1)S(t)|t◦ · τ◦π′ϕ′|

= sgn(πϕ) sgn(π′ϕ′)(−1)S(t)|t◦ · τ◦|

= (−1)S(t)|t◦ · τ◦|

as claimed. �
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8.4. Image of the Garnir relations

We now complete the strategy outlined at the start of this section by

showing that the map Ψ:
∧λ′ V → ∧λ◦′ V ∗ sends Garnir relations to Garnir

relations (the submodule GRλ(V ) ⊆ ∧λ′ V of Garnir relations was introduced

in §1.7). We then deduce Theorem A.

The proof of this key proposition is unavoidably somewhat long: after

the setup it is split into three claims. Recall we view B = B∗ = [d], as we

are now only interested in the linear structure of the map.

Proposition 8.10. The map Ψ:
∧λ′ V → ∧λ◦′ V ∗ respects Garnir relations,

in the sense that Ψ(GRλ(V )) ⊆ GRλ
◦
(V ∗).

Proof. Let R(t,A,B) be a Garnir relation (as defined in Definition 1.8).

Thus t ∈ CSYT[d](λ), and A ⊆ colj [λ] and B ⊆ colk[λ] where 1 6 j < k 6 λ1

and |A|+ |B| > λ′j . Our aim is to show that Ψ(R(t,A,B)) ∈ GRλ
◦
(V ∗). Note

that place permutations do not change the value of S(t), so all signs arising

from application of Ψ in the proof of this lemma will be (−1)S(t).

Recall that, by construction of t◦, the entries in columns j◦ = c+ 1− j
and k◦ = c + 1 − k of t◦ are complementary to the entries in columns j

and k of t. By Lemma 1.9, we may assume that the entries of t in AtB are

distinct.

Let

A◦ = { b ∈ colk◦ [λ
◦] | t◦(b) ∈ t(A) }

B◦ = { a ∈ colj◦ [λ
◦] | t◦(a) ∈ t(B) }

Dj = { a ∈ colj [λ] | t(a) ∈ colk(t) }

Dk = { b ∈ colk[λ] | t(b) ∈ colj(t) }.

The sets A◦ and B◦ are, respectively, the boxes in columns j◦ and k◦ of λ◦

whose entries in t◦ lie in the boxes A and B in t. The sets Dj and Dk are,

respectively, the boxes in columns j and k of λ whose entries appear in both

columns j and k of t. Note that t◦(A◦) ⊆ t(A) and t◦(B◦) ⊆ t(B), but

equality need not hold because entries which appear in both columns of t do
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not appear in either column of t◦. Thus t◦(A◦) omits the entries in Dk and

t◦(B◦) omits the entries in Dj and

(8.10.1) t◦(A◦) = t(A \Dj), t◦(B◦) = t(B \Dk).

Since t and t◦ are injective on the sets of boxes appearing above, |A◦| =

|A| − |Dj |, |B◦| = |B| − |Dk|.
j k

Dk

1 2
B

Dj

2 3
B

Dj

6 5
A B

Dk

8 6
A

9
A 9

A◦

7 8
A◦

5 7
B◦

4 4

3 1
B◦

j◦ k◦

An illustrative example in which λ′j = 5, λ′k = 4, d = 9 and t(A) =

{6, 8, 9}, t(B) = {2, 3, 5} is shown in the margin, with the sets introduced

above indicated. See also Figure 8.1, which shows all the sets introduced in

the course of the proof.

For each left coset of SA × SB in SAtB, choose a coset representative

which is a product of disjoint transpositions (a b) with a ∈ A, b ∈ B. Let T
be the subset of those representatives τ such that |t · τ | 6= 0; equivalently, T
is the subset of coset representatives that fix all boxes in Dj and Dk. (Only

entries in t(Dj) = t(Dk) can be repeated in a column of t · τ , and since

t(A) ∩ t(B) = ∅, such an entry appears as a repeat in t · τ if and only if it

has changed column.) Thus the specified Garnir relation may be written as

(8.10.2) R(t,A,B) =
∑
τ∈T
|t · τ | sgn τ.

The chosen coset representatives T precisely meet the properties as-

sumed in §8.3. Thus we can define for each τ ∈ T a permutation τ◦ ∈
Scolj◦ [λ◦]t colk[λ] by, in every transposition comprising τ , replacing the box a

with the unique box (t◦)−1t(a) in column j◦ or k◦ containing the entry t(a).

Let T ◦ = { τ◦ | τ ∈ T }. Moreover, the conditions of Proposition 8.9 are

met, and so we have

(8.10.3) Ψ(|t · τ |) = (−1)S(t)|t◦ · τ◦|

for all τ ∈ T .

Example 8.10.4. In the example shown in the margin, let τ be the place

permutation
(
(4, j) (3, k)

)
. Then τ is a permitted coset representative in T

and τ◦ =
(
(3, j◦) (4, k◦)

)
, both swapping the boxes containing 5 and 8. Since

t · τ and t◦ · τ◦ are both sorted to column standard tableaux by applying two
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transpositions, Ψ(|t · τ |) = (−1)S(t)|t◦ · τ◦|. If we instead take τ to be the

place permutation
(
(3, j) (3, k)

)
, then, since (3, j) ∈ Dj and so its entry 6

appears in both column j and column k of t, we have |t · τ | = 0 and τ 6∈ T .

We now show that T ◦ has one of the properties required by the set S in

the definition of Garnir relations.

Claim 8.10.5. Excluding precisely those cosets whose place permutation

actions send |t◦| to 0, the set T ◦ is a complete irredundant set of left coset

representatives of SA◦ × SB◦ in SA◦tB◦.

Proof. If τ , θ ∈ T are such that τ◦ and θ◦ represent the same coset of

SA◦ × SB◦ , then |t◦ · τ◦| = ±|t◦ · θ◦|. Using Proposition 8.9 and that Ψ is a

bijection, it follows that |t · τ | = ±|t · θ|. Since the boxes AtB have distinct

entries in t, it follows that τ and θ represent the same coset of SA × SB.

Additionally, if |t◦ · τ◦| = 0 then |t · τ | = 0, which contradicts τ ∈ T . Thus

distinct elements of T ◦ are representatives of distinct cosets whose place

permutation actions do not send |t◦| to 0.

On the other hand, given any permutation in SA◦tB◦ , we may choose

a coset representative σ that can be written as a product of disjoint trans-

positions (a b) with a ∈ A◦ and b ∈ B◦. Because t◦(A◦) and t◦(B◦) are

disjoint, the support of σ necessarily has distinct entries in t◦. Supposing also

that the place permutation action of this coset does not send |t◦| to 0, then

this representative satisfies the conditions of §8.3, and we may perform the

construction symmetric to τ 7→ τ◦. We thus obtain a permutation τ ∈ SAtB
such that τ ∈ T and τ◦ = σ. We conclude that T ◦ is complete with the

specified exclusions. �

It follows from (8.10.2) and (8.10.3) that

(8.10.6) Ψ(R(t,A,B)) = (−1)S(t)
∑
τ◦∈T ◦

|t◦ · τ◦| sgn τ◦.

It would be very convenient to conclude from this and Claim 8.10.5 that

Ψ(R(t,A,B)) = (−1)S(t)R(t◦,A◦,B◦), finishing the proof. However, it may not

be the case that |A◦|+ |B◦| > λ◦′k◦ , and this is a requirement for (t◦, A◦, B◦)
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to label a Garnir relation. We address this problem by expanding the subset

A◦ of colk◦ [λ
◦] in a way that does not affect the resulting relation: adding

boxes which have entries lying also in column j◦ of t◦.

Let

Nj = { a ∈ colj◦ [λ
◦] | t◦(a) ∈ t◦(colk◦ [λ

◦]) }

Nk = { b ∈ colk◦ [λ
◦] | t◦(b) ∈ t◦(colj◦ [λ

◦]) }

be the sets of boxes in columns j◦ and k◦ of λ◦ respectively whose entries

appear in both columns j◦ and k◦ of t◦. (Thus Nj and Nk are the analogues

for t◦ of Dj and Dk.) In particular, Nk is disjoint from A◦ and Nj is disjoint

from B◦. These sets, and the sets introduced in the proof of the following

claim, are shown in Figure 8.1.

Example 8.10.7.

j k

Dk

1 2
B

Dj

2 3
B

Dj

6 5
A B

Dk

8 6
A

9
A 9

A◦

Nj

7 8
A◦

5 7
NkB◦

Nj Nk

4 4

3 1
B◦

j◦ k◦

In our running example, shown in the margin now with

full annotations, A◦ =
{

(4, k◦), (5, k◦)
}

and B◦ =
{

(1, j◦), (3, j◦)
}

so |A◦|+
|B◦| = 4 6> λ◦′k◦ = 5. Therefore A◦ and B◦ cannot be used directly to

define a Garnir relation. We have Nk =
{

(2, k◦), (3, k◦)
}

, in bijection with

Nj =
{

(2, j◦), (4, j◦)
}

, and |A◦ tNk|+ |B◦| = 6. Therefore A◦ tNk and B◦

define a Garnir relation. The relevant boxes are shaded in the margin. By

Claim 8.10.9 at the end of this proof, Ψ(R(t,A,B)) = (−1)S(t)R(t◦,A◦tNk,B◦).

Claim 8.10.8. |A◦ tNk|+ |B◦| > λ◦′k◦.

Proof. Let U = colj [λ]\(A∪Dj), and let U◦ = { b ∈ colk◦ [λ
◦] | t◦(b) ∈

t(U) }. The entries in boxes in U do not appear in column k of t (because

these boxes are in column j but not in Dj), and hence do appear in column

k◦ of t◦, so |U | = |U◦|. Furthermore, U◦ is disjoint from A◦ because U is

disjoint from A, and we deduce that colk◦ [λ
◦] = A◦ tNk t U◦. We remind

the reader that these subsets are illustrated in Figure 8.1.

Using colk◦ [λ
◦] = A◦ tNk t U◦, the inequality we are required to show

becomes |B◦| > |U◦|. We observe that |B◦| = |B| − |B ∩Dk| (for t(B) =

t(B◦)t t(B ∩Dk), and t is injective on these sets). Together with |U | = |U◦|
as noted above, our requirement becomes |B| > |U |+ |B ∩Dk|.
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j

Dj \A

A ∩Dj

A \Dj

U

j◦

B◦

W ◦

Nj

k

Dk \B

B ∩Dk

B \Dk

W

k◦

A◦

U◦

Nk

[d]

t(B∩Dk)

t(Dj\A)∩ t(Dk\B)

t(A∩Dj)

t(A \Dj)

=

t◦(A◦)

t(U) = t◦(U◦)

t(B \Dk)

=

t◦(B◦)

t(W ) = t◦(W ◦)

t◦(Nj) = t◦(Nk)

t(Dj) = t(Dk) = colj(t) ∩ colk(t) colj(t) \ colk(t)

colk(t) \ colj(t) [d] \
(
colj(t) ∪ colk(t)

)

t

t

t

t

t◦

t◦

t◦

t

t

t

t

t◦

t◦

t◦

Figure 8.1. The sets of boxes and their entries considered in the proof of

Proposition 8.10. Column j of [λ] and column j◦ of [λ◦] are shown on the

left, column k of [λ] and column k◦ of [λ◦] are shown on the right, and the set

{1, . . . , d} containing their entries is shown in the middle. The solid colouring

indicates the boxes, and their entries, that may be moved by elements of

T ; the dotted colouring indicates the boxes, and their entries, which lie

in A t B but which are fixed by T . The sets W = colk[λ]\(B ∪ Dk) and

W ◦ = { a ∈ colj◦ [λ
◦] | t(a) ∈ t(W ) } are defined analogously to the sets of

boxes U and U◦ used in the proof; they are indicated here only in order to

complete the partition and are not used in the proof.
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We next observe that |B ∩Dk| 6 |Dj \ A|. Indeed, t(B ∩Dk) ⊆ t(Dj)

because t(Dj) = t(Dk); but also t(B ∩Dk) ∩ t(A) = ∅ by the assumption

that t(A) ∩ t(B) = ∅, and thus t(B ∩ Dk) ⊆ t(Dj \ A). Then since t is

injective on each of these sets, we have |B ∩Dj | 6 |Di \A|.
It now suffices to show that |B| > |U |+ |Dj \A|. Adding |A| to each side

and using that colj [λ] = A t (D \A) t U , this requirement is equivalent to

|A|+ |B| > λ′j . This was our initial assumption on A and B. �

Claim 8.10.9. Ψ(R(t,A,B)) = (−1)S(t)R(t◦,A◦tNk,B◦).

Proof. Let R be a set of left coset representatives for SA◦tNk × SB◦ in

SA◦tNktB◦ , chosen so that each representative that keeps all the boxes in Nk

in column k◦ fixes all these boxes. Let Q ⊆ R be this set of representatives

fixing all the boxes in Nk; then Q forms a complete irredundant set of left

coset representatives of SA◦ × SB◦ in SA◦tB◦ . By Claim 8.10.5 we have∑
σ∈Q |t◦ · σ| sgnσ =

∑
τ◦∈T ◦ |t◦ · τ◦| sgn τ◦. Thus

R(t◦,A◦tNk,B◦) =
∑

σ∈R\Q

|t◦ · σ| sgnσ +
∑
τ◦∈T ◦

|t◦ · τ◦| sgn τ◦.

Each summand |t◦ ·σ| in the first sum is 0, because σ moves a box containing

an entry in Nk into column j, in which this entry is already contained in

a box in Nj . By (8.10.6) the second summand is (−1)S(t)Ψ(R(t,A,B)), as

required. �

We thus have Ψ(R(t,A,B)) ∈ GRλ
◦
(V ∗), finishing the proof of the proposi-

tion. �

Remark 8.11. In the proof of Proposition 8.10, we could equally well have

joined Nj to B◦ instead of Nk to A◦, and shown instead that |A◦|+|B◦tNj | >
λ◦′k◦ and Ψ(R(t,A,B)) = R(t◦,A◦,B◦tNj).

We can now deduce the main results of this section.

Proof of Theorem A. The quotient construction of the Schur endo-

functor from Proposition 2.13 is:

∇λV ∼=
∧λ′ V�GRλ(V ) .
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By Proposition 8.10, the map Ψ descends to a linear map ∇λV → ∇λ◦V ∗.
Moreover, Ψ̄ descends to a G-equivariant linear map

∇λV → ∇λ◦V ∗ ⊗ (detV )⊗c

e(t) 7→ (−1)S(t) e(t◦)⊗ 1

for t ∈ CSYT[d](λ).

We observe that t 7→ t◦ is a bijection SSYT[d](λ) → SSYT[d](λ
◦) (and

not just a bijection CSYT[d](λ) → CSYT[d](λ
◦) as is immediate); this is

shown in [PW21, Proposition 7.1]. Recalling from Proposition 2.12 that the

semistandard tableaux label a basis of polytabloids, we deduce that the map

above is bijective between bases and hence an isomorphism. �
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9. Wronskian isomorphism

In this section we prove Theorem C.

Theorem C (Characteristic-free Wronskian isomorphism). Let m, l ∈ N.

Let K be a field and let E be the natural 2-dimensional representation of

GL2(K). There is an isomorphism of GL2(K)-representations

Symm SymlE ⊗ (detE)⊗m(m−1)/2 ∼=
∧m Syml+m−1E

given by restriction of the K-linear map (SymlE)⊗m → ∧m Syml+m−1E

defined on the canonical basis of (SymlE)⊗m by

m⊗
j=1

XijY l−ij 7→
m∧
j=1

Xij+m−jY l−ij+j−1.

In fact, we construct an injection between representations of the n× n
general linear group GLn(K), establishing the following theorem.

Theorem 9.1. Let n,m, l ∈ N, and let m =
(
m+n−1

m

)
. There is an injective

GLn(K)-equivariant linear map

Symm SymlE ⊗ (detE)mm/n ↪→ ∧m Syml+mE.

When n = 2, the injective map we identify is the map described in

Theorem C, as noted after its definition (Definition 9.3). In this case we

have m = m+1 and the dimensions of Symm+1 SymlE and
∧m+1 Syml+mE

agree, so the injective map is an isomorphism, yielding Theorem C (after

shifting the parameter m by 1).

We adopt the notation of Theorem 9.1 throughout this section.

9.1. Construction of map

We begin by constructing a linear map Symm SymlE ⊗ (detE)mm/n →∧m Syml+mE which specialises to the required map when n = 2. We

prove that our map is injective and GLn(K)-equivariant in §9.2 and §9.3

respectively.
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Recall that {X1, . . . , Xn} denotes the natural basis for the natural repre-

sentation E, so that for g ∈ GLn(K) we have

gXi =
n∑
j=1

gj,iXj .

For each r ∈ N, we view Symr E as the space of homogeneous polynomials

of degree r in X1, . . . , Xn. Let Monr ⊆ Symr E be the set of monomials of

degree r, a basis for Symr E.

We will make use of the lexicographical ordering on monomials. It is

helpful to view this ordering as an injection into N as follows. Let b > l+m,

and define an injection Ξ:
⊔b−1
r=0 Monr → N by

Ξ(Xa1
1 · · ·Xan

n ) = bn−1a1 + bn−2a2 + . . .+ ban−1 + an.

For 0 6 r < b, we obtain the lexicographical ordering by totally ordering

Monr via Ξ: define f >Ξ h if and only if Ξ(f) > Ξ(h).

A basis of Symm SymlE is indexed by m-tuples of monomials. For each

r ∈ N, let (Monr)
m denote the set of m-tuples whose entries are monomials

in Monr. Denote componentwise multiplication of tuples by concatenation;

that is, given f ∈ (Monr)
m and h ∈ (Monr′)

m, write fh ∈ (Monr+r′)
m for

the m-tuple with ith entry (fh)i = fihi.

Define

(Monr)
m
> = {f ∈ (Monr)

m | f1 >Ξ . . . >Ξ fm },

(Monr)
m
> = {f ∈ (Monr)

m | f1 >Ξ . . . >Ξ fm }

to be the sets of weakly decreasing and strictly decreasing m-tuples respec-

tively. Note that (Monm)m> contains a unique element, consisting of the

monomials of degree m in decreasing order; call that element w.

Example 9.2. Suppose n = 2, and write X = X1, Y = X2. Choose b = 10,

and we have, for example,

Ξ(X2Y 3) = 23.

On Mon2, this gives the ordering X2 >Ξ XY >Ξ Y
2. The unique element of

(Mon2)3
> is w = (X2, XY, Y 2).
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Given f ∈ (Monr)
m, define the tensor product of f to be

f⊗ = f1 ⊗ · · · ⊗ fm ∈ (Symr E)⊗m,

and define the alternating product of f to be

f∧ = f1 ∧ · · · ∧ fm ∈
∧m Symr E.

Then {f⊗ | f ∈ (Monr)
m } is a basis for (Symr E)⊗m and {f∧ | f ∈

(Monr)
m
> } is a basis for

∧m Symr E.

Let the symmetric group Sm act (on the right) on (Monr)
m by place

permutation (given σ ∈ Sm and f ∈ (Monr)
m, we say (f · σ)i = fiσ−1). Let

stabf 6 Sm denote the stabiliser of f with respect to this action, and let

stabf\Sm denote a set of right coset representatives. Let f sym denote the

symmetrisation of f⊗; we can write this as

f sym =
∑

σ∈stabf\Sm

(f · σ)⊗ =
∑

σ∈stabf\Sm

f1σ−1 ⊗ · · · ⊗ fmσ−1 ∈ Symm Symr E.

Then {f sym | f ∈ (Monr)
m
> } is a basis for Symm Symr E.

We can now define our K-linear map.

Definition 9.3. Let ζ : Symm SymlE ⊗ (detE)⊗mm/n → ∧m Syml+mE be

the K-linear map defined by extension of

ζ(f sym ⊗ 1) = Z(f)

for each f ∈ (Monl)
m
> , where Z(f) ∈ ∧m Syml+mE is the sum

Z(f) =
∑

σ∈stabf\Sm

((f · σ)w)∧ =
∑

σ∈stabf\Sm

(f1σ−1w1 ∧ · · · ∧ fmσ−1wm).

Note that when n = 2, and writing X = X1 and Y = X2, the tu-

ple w is obtained by ordering the monomials of degree m by decreasing

powers of X; that is, w = (Xm, Xm−1Y, . . . , Y m). Thus XiY l−iwj =

Xi+m+1−jY l−i−m−1+j , and it is clear that ζ is the map described in the

statement of Theorem C.
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Example 9.4. Suppose l = 4 and m = 2, and suppose n = 2 and write

X = X1 and Y = X2. We have m = 3 and w = (X2, XY, Y 2). Let

f = (X4, XY 3, XY 3) ∈ (Mon4)3
>. Then

f sym = (X4 ⊗XY 3 ⊗XY 3) + (XY 3 ⊗XY 3 ⊗X4) + (XY 3 ⊗X4 ⊗XY 3)

and

Z(f) = (X6∧X2Y 4∧XY 5)+(X3Y 3∧X2Y 4∧X4Y 2)+(X3Y 3∧X5Y ∧XY 5).

Note that we have written each summand of Z(f) below the summand of

f sym from which it is obtained by componentwise multiplication with w.

9.2. Injectivity of map

We prove that ζ is injective by showing that the set {Z(f) | f ∈
(Monl)

m
> } is K-linearly independent.

We make use of the following order on (Monl+m)m.

Definition 9.5. Define a partial order <Σ on (Monl+m)m by f <Σ h if

and only if
∑m

i=1 Ξ(fi)
2 <

∑m
i=1 Ξ(hi)

2. Extend <Σ to a total order on

(Monl+m)m arbitrarily.

Lemma 9.6. Let f ∈ (Monl)
m
> , and let σ ∈ Sm, σ 6∈ stabf . Then (f ·

σ)w <Σ fw.

Proof. Observe that if f , h and fh are all in the domain of Ξ, then

Ξ(fh) = Ξ(f) + Ξ(h). Thus we have

m∑
i=1

Ξ((fw)i)
2 −

m∑
i=1

Ξ(((f · σ)w)i)
2

=

m∑
i=1

(
Ξ(fiwi)

2 − Ξ(fiσ−1wi)
2
)

=

m∑
i=1

(
(Ξ(fi) + Ξ(wi))

2 − (Ξ(fiσ−1) + Ξ(wi))
2
)

= 2

(
m∑
i=1

Ξ(fi)Ξ(wi)−
m∑
i=1

Ξ(fiσ−1)Ξ(wi)

)
.
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This is positive, and the lemma follows, by the rearrangement inequality

(which states that given real numbers a1 > . . . > ar and b1 > . . . > br we

have
∑r

i=1 aibi >
∑r

i=1 aibiσ−1 for any permutation σ, with equality if and

only if bi = biσ−1 for all i [HLP52, Theorem 368]). �

Proposition 9.7. The set {Z(f) | f ∈ (Monl)
m
> } is K-linearly indepen-

dent.

Proof. Consider a K-linear combination A =
∑

f∈(Monl)
m
>
αfZ(f),

where αf ∈ K are not all zero. Let f∗ ∈ (Monl)
m
> be <Σ-maximal such that

αf∗ 6= 0.

Let f be such that αf 6= 0, and write Z(f) with respect to the basis

{h∧ | h ∈ (Monl+m)m> }. If f <Σ f∗, then also fw <Σ f∗w, and hence

for any h∧ with nonzero coefficient in Z(f) we have by Lemma 9.6 that

h 6Σ fw <Σ f∗w. Meanwhile, if f = f∗, we have by Lemma 9.6 that

(f∗ · σ)w <Σ f∗w for all σ ∈ Sm, σ 6∈ stabf∗, and hence (f∗w)∧ occurs

with coefficient 1. Thus, when A is written with respect to this basis, the

coefficient of (f∗w)∧ is αf∗ 6= 0. Thus A 6= 0. �

9.3. Equivariance of map

We now show that ζ is GLn(K)-equivariant, completing the proof of

Theorem 9.1 and hence Theorem C. Recall that GLn(K) is generated by

elementary transvections and diagonal matrices (Lemma 5.9), where an

elementary transvection is a matrix that has 1s on the diagonal and a unique

nonzero off-diagonal entry. Thus it suffices to show ζ respects the action of

these matrices.

We first find an alternative expression for ζ. Consider the K-bilinear

map defined by extension of

(SymlE)
⊗m × (SymmE)⊗m → ∧m Syml+mE

(f⊗, h⊗) 7→ (fh)∧

for f ∈ (Monl)
m and h ∈ (Monm)m. This induces the following K-linear

map (SymlE)
⊗m ⊗ (SymmE)⊗m → ∧m Syml+mE.
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Definition 9.8. Let ω : (SymlE)
⊗m ⊗ (SymmE)⊗m → ∧m Syml+mE be

the K-linear map defined on pure tensors by

ω(f1 ⊗ · · · fm ⊗ h1 ⊗ · · · ⊗ hm) = f1h1 ∧ · · · ∧ fmhm

for f1, . . . , fm ∈ SymlE and h1, . . . , hm ∈ SymmE (not necessarily monomi-

als).

It is easy to verify that ω is GLn(K)-equivariant.

Our map ζ can now be written as

ζ(f sym ⊗ 1) = ω(f sym ⊗w⊗).

for all f ∈ (Monl)
m.

Lemma 9.9. Let f ∈ Symm SymlE and let h ∈ (Monm)m. If h has a

repeated entry, then ω(f⊗ h⊗) = 0.

Proof. By linearity, it suffices to prove this when f = f sym for some

f ∈ (Monl)
m. For f ∈ (Monl)

m and σ ∈ Sm, observe that

ω((f · σ)⊗ ⊗ h⊗) = f1σ−1h1 ∧ · · · ∧ fmσ−1hm

= sgn(σ)f1h1σ ∧ · · · ∧ fmhmσ

= sgn(σ)ω(f⊗ ⊗ (h · σ−1)
⊗

).

Since h has a repeated entry, there exists a transposition τ such that

h · τ = h. Fix such a τ .

Since τ is a transposition, the orbits of the action of τ on the right

cosets of stabf in Sm are of size 1 or 2. Let T be the set of representatives

σ ∈ stabf\Sm for cosets in orbits of size 1 (that is, such that f · στ = f · σ;

equivalently, such that f · σ has repeated entries at the positions swapped by

τ). For σ ∈ T , observe that ω((f · σ)⊗ ⊗ h⊗) has repeated entries (at the

positions swapped by τ), and so is equal to 0.

Meanwhile, pick one coset from each orbit of size 2 of the action of τ

on the right cosets of stabf in Sm, and let A ⊆ stabf\Sm be their set of

representatives. Then using the observation from the beginning of the lemma
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we have∑
σ∈stabf\Sm

σ 6∈T

ω((f · σ)⊗ ⊗ h⊗)

=
∑
σ∈A

(
ω((f · σ)⊗ ⊗ h⊗) + ω((f · στ)⊗ ⊗ h⊗)

)
=
∑
σ∈A

(
ω((f · σ)⊗ ⊗ h⊗) + sgn(τ)ω((f · σ)⊗ ⊗ (h · τ−1)

⊗
)
)

= 0.

Thus ω(f sym ⊗ h⊗) = 0. �

Lemma 9.10. Let g ∈ GLn(K) be an elementary transvection and let r ∈ N.

There exists a total order ≺ on Monr such that for all f ∈ Monr we have

gf = f +
∑
h≺f

γf,hh.

for some constants γf,h ∈ K.

Proof. Suppose g is the elementary transvection sending Xi 7→ Xi+αXj

(and fixing all other variables), where i, j ∈ [n] are distinct and α ∈ K. Define

a partial order on Monr by h ≺ f whenever the exponent of Xi in h is strictly

lower than that in f , and extend to a total order (for example, we could

take the lexicographical order where the exponent of Xi is the first to be

compared). This has the required properties: given f ∈ Monr in which the

exponent of Xi is a, the image gf is obtained from f by replacing Xa
i with

(Xi + αXj)
a, so f occurs as a summand of the image exactly once and all

other summands h have a strictly lower exponent of Xi. �

Lemma 9.11. Let f ∈ Symm SymlE and let g ∈ GLn(K) be an elementary

transvection. Then

ω(f⊗ (g − 1)w⊗) = 0.

Proof. Let ≺ be a total order on Monm which has the property of

Lemma 9.10, and let ŵ ∈ (Monm)m be the m-tuple of distinct monomials

in Monm in increasing order with respect to ≺. Thus ŵ = w · σ for some
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σ ∈ Sm. As in the proof of Lemma 9.9, we have ω(f ⊗ (g − 1)ŵ⊗) =

sgn(σ)ω(f ·σ−1⊗ (g−1)w⊗), so it suffices to show that ω(f⊗ (g−1)ŵ⊗) = 0.

By the choice of ≺, we have for each 1 6 i 6 m that

gŵi =
i∑

j=1

γi,jŵj ,

and hence

gŵ⊗ =
m⊗
i=1

 i∑
j=1

γi,jŵj

,
for some constants γi,j ∈ K with γi,i = 1.

Observe that, when expanded out, the only summand without a repeated

factor is ŵ⊗ itself. Then by Lemma 9.9, ω(f⊗ h) = 0 for each summand h

of (g − 1)ŵ⊗, and the result follows. �

Proposition 9.12. The map ζ is GLn(K)-equivariant.

Proof. For g ∈ GLn(K), f ∈ (Monl)
m
> , we have

gζ(f sym ⊗ 1) = gω(f sym ⊗w⊗) = ω(gf sym ⊗ gw⊗),

ζ(g(f sym ⊗ 1)) = ζ(gf sym ⊗ (det g)mm/n) = (det g)mm/nω(gf sym ⊗w⊗).

Thus we are required to show that

ω(gf sym ⊗ gw⊗) = ω(gf sym ⊗w⊗)(det g)mm/n

for all f ∈ (Monl)
m
> and all g ∈ GLn(K). It suffices to consider g an

elementary transvection or a diagonal matrix, since these elements generate

GLn(K) (Lemma 5.9).

If g is an elementary transvection, then det g = 1 and Lemma 9.11 leads

immediately to ω(gf sym ⊗ gw⊗) = ω(gf sym ⊗w⊗), giving the requirement.

If g is diagonal, writing gi for the ith diagonal entry of g, we have that

g acts on a monomial Xa1
1 · · ·Xan

n by multiplication by ga11 · · · gann . In w,

each variable occurs exactly mm/n many times, and so g acts on w⊗ by

multiplication by g
mm/n
1 · · · gmm/nn = (det g)mm/n, as required. �
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10. Hermite reciprocity

We deduce Hermite reciprocity, restated below, from the complementary

partition isomorphism and the Wronskian isomorphism. In fact we need only

the special case Corollary 8.3 of the former isomorphism; this corollary was

proved at the end of §8.1.

Theorem D (Characteristic-free Hermite reciprocity). Let m, l ∈ N and let

E be the natural 2-dimensional representation of GL2(K). Then

Symm SymlE ∼= Syml SymmE.

Proof. For convenience, we establish the isomorphism over SL2(K).

Since the representations are polynomial of equal degree, it follows from

Proposition 5.10 that the isomorphism also holds over GL2(K).

Recall from Proposition 3.3 and Proposition 3.7 that the contravariant

dual −◦ satisfies (Symn V )◦ ∼= Symn V
◦ and (

∧n V )◦ ∼=
∧n V ◦. Note also

that E ∼= E◦. Using these relations, we have, as representations of SL2(K),

Symm SymlE ∼=
∧m Syml+m−1E (by Theorem C)

∼=
∧l Syml+m−1E (by Corollary 8.3)

∼=
(∧l Syml+m−1E

)◦
∼= (Syml SymmE)◦ (by Theorem C)

∼= Syml SymmE,

as required. �

We illustrate how to explicitly compose the maps above with an example.

(In practice it is convenient to address duality in a different order than in

the proof of Theorem D.)

Example 10.1. Suppose l = m = 2, and write E = 〈X,Y 〉K as in §9. In

this example we identify the image in Syml SymmE of the basis element

X2⊗Y 2 + Y 2⊗X2 ∈ Symm SymlE.
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We first apply the Wronskian isomorphism ζ (Theorem C), giving

Symm SymlE → ∧m Syml+m−1E

X2⊗Y 2 + Y 2⊗X2 7→ X3∧Y 3 −X2Y ∧XY 2.

Next we apply the complementary partition isomorphism ψ (see Defini-

tion 8.1): we replace each summand with the wedge product of the duals

of the complementary basis elements (and also pick up a sign, which in

our example is +). Composing with the isomorphism (
∧r V )∗ ∼=

∧r V ∗ of

Proposition 3.3 we obtain

∧m Syml+m−1E → (
∧l Syml+m−1E)∗

X3∧Y 3 −X2Y ∧XY 2 7→
(
X2Y ∧XY 2

)∗ − (X3 ∧ Y 3
)∗
.

Now we apply the dual ζ? of the Wronskian isomorphism. To find the image

ζ∗(x∗), we seek those basis elements y such that ζ(y) has x as a summand.

For x = X2Y ∧ XY 2, there are two such basis elements: XY ⊗ XY and

the symmetrisation of X2 ⊗ Y 2 (the latter appearing with sign −1); for

x = X3 ∧ Y 3, the symmetrisation of X2 ⊗ Y 2 is the only such basis element.

Thus

(
∧l Syml+m−1E)∗ → (Syml SymmE)∗

(
X2Y ∧XY 2

)∗ − (X3 ∧ Y 3
)∗ 7→ (

XY ⊗XY
)∗

− 2
(
X2⊗Y 2 + Y 2⊗X2

)∗
.

The isomorphism (Symr V )∗ ∼= Symr V
∗ in Proposition 3.7 is given by inter-

changing symmetrisations with products, yielding

(Syml SymmE)∗ → Syml SymmE
∗(

XY ⊗XY
)∗

− 2
(
X2⊗Y 2 + Y 2⊗X2

)∗ 7→ (X∗⊗Y ∗ + Y ∗⊗X∗) · (X∗⊗Y ∗ + Y ∗⊗X∗)

− 2(X∗ ⊗X∗) · (Y ∗ ⊗ Y ∗).

Finally we use Proposition 3.2: there is an isomorphism E∗ ∼= E◦ ∼= E given

by the basis change matrix J =
(

0 1
−1 0

)
, which in our case replaces X∗ with
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−Y and Y ∗ with X. We have

Syml SymmE
∗ → Syml SymmE

(X∗⊗Y ∗+ Y ∗⊗X∗)·(X∗⊗Y ∗+ Y ∗⊗X∗)

− 2(X∗ ⊗X∗) · (Y ∗ ⊗ Y ∗)
7→

(X⊗Y + Y⊗X)·(X⊗Y + Y⊗X)

− 2(X ⊗X) · (Y ⊗ Y ).

Thus our overall map sends

Symm SymlE → Syml SymmE

X2⊗Y 2 + Y 2⊗X2 7→
(X⊗Y + Y⊗X) · (X⊗Y + Y⊗X)

− 2(X ⊗X) · (Y ⊗ Y ).

Notice in particular that we have not merely interchanged symmetrisations

and products. Thus this map is of interest even in characteristic 0, where it

corresponds to a non-trivial automorphism of Sym2 Sym2E.
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11. Conjugate hook partition non-isomorphism

The goal of this section is to prove Theorem E, which rules out the

existence of certain plethystic isomorphisms. We achieve this with the aid of

a new invariant called the defect set.

Throughout we use the notation akin to that of §9 in which E = 〈X,Y 〉K
is the natural representation of SL2(K).

11.1. Weight spaces and the defect set

Suppose, to begin, that K is infinite. Let T be the torus of diagonal

matrices in SL2(K). Let V be a representation of a subgroup of SL2(K)

containing T . For r ∈ Z, we say the r-weight space of V is

(11.1) Vr =

{
v ∈ V

∣∣∣∣∣
(
α 0

0 α−1

)
v = αrv for all α ∈ K×

}
.

An integer r such that Vr 6= 0 is called a weight of V ; an element of an

r-weight space is called a weight vector with weight r.

Remark 11.2. Weight spaces for representations of GLn(K) were defined

in Definition 6.1. Our definition for representations of SL2(K) is slightly

different, due to the restricted form of diagonal elements of SL2(K). A

weight vector with weight r of a representation of SL2(K) (as defined above)

corresponds to, in the notation of Definition 6.1, a vector of weight (r + i, i)

for some integer i. These weights spaces cannot be distinguished by diagonal

matrices of the form
(
α 0
0 α−1

)
, whence the definition.

We say that T acts diagonalisably on V if V =
⊕

r∈Z Vr, or equivalently

if V has a basis of weight vectors. If V is a KSL2(K)-module on which T

acts diagonalisably and m ∈ Z is maximal such that Vm 6= 0, then we say

that Vm is the highest weight space of V , and that a nonzero v ∈ Vm is a

highest weight vector. We say v ∈ Vm is a unique highest weight vector if Vm

is one-dimensional.
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Let B be the Borel subgroup of SL2(K) consisting of lower triangular

matrices. For γ ∈ K we let

Mγ =

(
1 0

γ 1

)
∈ B.

We introduce the following invariant, which we will use to distinguish

non-isomorphic representations and hence obtain the results of this section.

Definition 11.3. Let V be a KSL2(K)-module on which T acts diagonalis-

ably with unique highest weight vector v of weight m. Let Bv denote the

KB-submodule of V generated by v. We define the defect set of V , denoted

D(V ), by

D(V ) = { d ∈ N0 | (Bv)m−2d 6= 0 }.

Example 11.4. Let α > 1. The module SympαE has weight vector basis

{Xpα , . . . , Xpα−iY i, . . . , Y pα}, where Xpα−iY i has weight pα − 2i. Thus the

weights are pα, . . . , pα − 2i, . . . ,−pα, and Xpα is a unique highest weight

vector. Observe that MγX
pα = (X + γY )p

α
= Xpα + γp

α
Y pα , and hence

BXpα is spanned by Xpα and Y pα whose weights are pα and −pα respectively.

Hence the defect set is D(SympαE) = {0, pα}.

We generalise this example to arbitrary upper and lower symmetric

powers in Lemma 11.11.

Finite fields. To obtain the full version of Theorem E we need the extension of

Definition 11.3 to KSL2(K)-modules when K is finite. Suppose that |K| = q.

Defining Vr as in (11.1) leads to ambiguity: the weight r is now well-defined

only up to multiples of q − 1, and we have V =
∑

r∈Z Vr, no longer direct in

general. Therefore, for the purposes of our work, we restrict the definition

of weights to integers in the range
( q−1

2 , q−1
2

]
∩ Z. Correspondingly, in the

definition of the defect set, Definition 11.3, we take only those d in the range

0 6 d < (q− 1)/2. Note that with these definitions, T acts diagonalisably on

any KSL2(K)-module (by a well-known generalisation of Maschke’s Theorem,

using that T is isomorphic to the cyclic group K× of order q − 1).



11. CONJUGATE HOOK PARTITION NON-ISOMORPHISM 117

Example 11.5. We revisit Example 11.4, now supposing K is a finite field.

For K sufficiently large (|K| > pα+2 suffices), all the weights written down

in Example 11.4 are within the required range, and no changes are needed.

However, when |K| 6 1 + 2m, where m is the highest weight defined for an

infinite field, the behaviour can be very different.

Consider Sym4E when K = F8. Weights are restricted to be between −3

and 3 (inclusive), and so X4 has weight −3 (rather than 4 as in the infinite

field case). A unique highest weight vector is Y 4 with weight 3 (the other

weight vectors are X3Y with weight 2, X2Y 2 with weight 0, and XY 3 with

weight −2). The submodule BY 4 is spanned by Y 4 and thus the defect set

is D(Sym4E) = {0}.
Consider instead Sym5E when K = F5. Weights are restricted to be

between −1 and 2 (inclusive), and so Sym5E has weights 1 (with weight

vectors X5, X3Y 2 and XY 4) and −1 (with weight vectors X4Y , X2Y 3

and Y 5). In particular there is not a unique highest weight vector and so

the defect set is not defined.

Identifying defect sets for images of Schur endofunctors. We first verify that

defect sets are defined for the modules we wish to distinguish using them.

We assume throughout that |K| > 4 (as otherwise weights are only permitted

to be in the sets {0} or {0, 1}, which is too restrictive).

The natural representation E has weight vector basis {X,Y }, where X

is a unique highest weight vector of weight 1 and Y has weight −1. It is

straightforward to identify weight vector bases for the images of E under

iterated Schur endofunctors and their duals, and observe that there is a

unique highest weight vector and hence that the defect set is defined.

Proposition 11.6. Let V be a KSL2(K)-module with weight vector basis

{v1, . . . , vl}, where vi has weight ri, for some integers r1 6 · · · 6 rl−1 < rl.

(i) The basis of ∇λV consisting of semistandard polytabloids is a weight

vector basis, in which e(t) has weight
∑

b∈[λ] rt(b) (modulo |K| − 1).

Let tmax be the semistandard tableau obtained by filling each column
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from the bottom with integers decreasing from l, and suppose that

|K| > 1 + 2
∑

b∈[λ] rtmax(b). Then a unique highest weight vector is

e(tmax).

(ii) The basis {v∗1, . . . , v∗l } for V ◦ dual to {v1, . . . , vl} is a weight vector

basis, in which v∗i has weight ri. A unique highest weight vector is v∗l ,

of weight rl.

Proof. The claimed weights are clear; that the semistandard poly-

tabloids form a basis is Proposition 2.12. Since rl−1 < rl, there is in each

case a unique highest weight vector. �

Remark 11.7. It is also clear that, in the notation of Proposition 11.6,

the basis {v∗1, . . . , v∗l } for V ∗ dual to {v1, . . . , vl} is a weight vector basis, in

which v∗i has weight −ri (where we view − q−1
2 = q−1

2 if |K| = q is finite and

odd). But V ∗ ∼= V ◦ by Proposition 3.2, and so we deduce that the multiset

of weights of V is symmetric about zero.

To identify which of the weight spaces intersect the KB-submodule

generated by the highest weight vector, it suffices to consider the action of

unipotent lower triangular matrices on the highest weight vector. This is

made precise by the following lemma.

Lemma 11.8. Let V be a KSL2(K)-module on which T acts diagonalisably,

and let U be a KB-submodule of V generated by some weight vector v ∈ V .

Then Ur 6= 0 if and only if there exists some γ ∈ K such that the component

of Mγv in Vr is nonzero.

Proof. For the “if” direction, it suffices to prove that if v1, . . . , vn are

nonzero weight vectors with distinct weights r1, . . . , rn such that v1+· · ·+vn ∈
U , then each vi lies in U . We use induction on n. The case n = 1 is clear.

Suppose n > 1, and write x = v1 + · · · + vn. Choose α ∈ K such that

αr1 6= αrn (when K is finite this is possible since |K| > |r1| + |rn| by our

definition of weights), and let g =
(
α 0
0 α−1

)
∈ B 6 SL2(K). Then

U 3 gx− αrnx = (αr1 − αrn)v1 + . . .+ (αrn−1 − αrn)vn−1.
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By the inductive hypothesis, v1 ∈ U , and hence x − v1 ∈ U . Then by the

inductive hypothesis applied to x− v1, we also have v2, . . . , vn ∈ U .

Conversely, suppose Ur 6= 0. Then there exists some g ∈ B such that gv

has nonzero component in Vr. An element of B can be written as g =

Mγ

(
α 0
0 α−1

)
for some α, γ ∈ K, and since v is a weight vector we have that(

α 0
0 α−1

)
v is a nonzero scalar multiple of v. Thus Mγv has nonzero component

in Vr. �

Finally in this subsection we record a lemma which is of great use when

ruling out certain elements from being in defect sets. Given subsets I, J ⊆ N0,

let I + J = { i+ j | i ∈ I, j ∈ J }.

Lemma 11.9. Suppose V and W are KSL2(K)-modules on which T acts

diagonalisably with a unique highest weight vector.

(i) If ϕ : V →W is a homomorphism that does not annihilate the highest

weight vector of V , then D(imϕ) is defined and D(imϕ) ⊆ D(V ). In

particular, if W is a quotient of V , then D(W ) ⊆ D(V ).

(ii) Suppose |K| − 1 is strictly greater than twice the sum of the highest

weights of V and W . Then the set D(V ⊗W ) is defined and D(V ⊗
W ) ⊆ D(V ) +D(W ).

Proof. Let {v1, . . . , vl} and {w1, . . . , wm} be weight vector bases for V

and W respectively, with vi having weight ri and wj having weight sj , for

some integers r1 6 · · · 6 rl−1 < rl and s1 6 · · · 6 sm−1 < sm. We use the

characterisation from Lemma 11.8 for the presence of elements in the defect

sets.

For (i), observe that if ϕ(vi) is nonzero, then it is a weight vector of

weight ri; thus ϕ(Vr) ⊆ Wr for all r ∈ Z. Then {ϕ(v1), . . . , ϕ(vl)} contains

a weight vector basis for imϕ. Note that ϕ(vl) is in this basis since it is

nonzero by assumption and is the unique element of the spanning set with

weight rl. Thus ϕ(vl) is the unique highest weight vector of imϕ, so D(imϕ)

is defined. Furthermore, if Mγϕ(vl) has nonzero component in the weight

space Wr, then Mγvl has nonzero component in Vr.
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For (ii), observe that vi ⊗ wj is a weight vector of weight ri + wj (using

the hypothesis on the field size). Moreover, the set { vi ⊗ wj | 1 6 i 6

l, 1 6 j 6 m } is a weight vector basis for V ⊗ W , and vl ⊗ wm is the

unique highest weight vector. Thus D(V ⊗W ) is defined. The containment

D(V ⊗W ) ⊆ D(V ) +D(W ) is clear: if there exists γ such that Mγ(vl ⊗wm)

has nonzero component in the weight space (V ⊗W )rl+sm−2d, then, since

Mγ(vl ⊗ wm) = (Mγvl)⊗ (Mγwm), there exists i, j such that i+ j = d and

Mγvl and Mγwm have nonzero components in the weight spaces Vrl−2i and

Wsm−2j . �

11.2. Symmetric powers and carry-free sums

In this subsection we identify the defect sets for iterated symmetric

powers. This prepares the ground for the proof of Theorem E, and also yields

Proposition 11.12, characterising when symmetric powers are isomorphic to

their duals, and Proposition 11.14, demonstrating that our Theorem D is

the unique modular generalisation of Hermite reciprocity.

For a ∈ {0, . . . , l}, let (X⊗l−a ⊗ Y ⊗a)sym ∈ SymlE be the sum of all
(
l
a

)
pure tensors Z1 ⊗ · · · ⊗ Zl where exactly l − a of the factors are X and the

remaining a are Y .

Binomial and multinomial coefficients will frequently appear when ex-

panding the action of matrices Mγ on symmetric powers. To determine when

these coefficients are nonzero modulo p, we require the notion of carry-free

sums.

Definition 11.10. Let a1, . . . , as ∈ N0, and write a
(j)
i for the base p digit

of ai corresponding to the power of pj . We say that the sum a1 + · · ·+ as

is carry-free in base p if a
(j)
1 + · · ·+ a

(j)
s 6 p− 1 for all j. For a, l ∈ N0, we

say that a is a carry-free summand of l, denoted a P l, if a 6 l and the sum

a+ (l − a) is carry-free.

Equivalently, a1 + · · · + as is carry-free in base p if the sum can be

computed in base p without carrying, by the usual algorithm taught in

schools for base 10. Lucas’s Theorem (see for instance [Jam78, Lemma 22.4])

states that the binomial coefficient
(
l
a

)
is nonzero modulo p if and only
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if a P l, and more generally that the multinomial coefficient
(
a1+···+as
a1,...,as

)
is

nonzero modulo p if and only if the sum a1 + · · ·+ as is carry-free.

Lemma 11.11. Let l ∈ N0. If K has prime characteristic p and |K| >
1 + 2l then

(i) D(SymlE) = {0, . . . , l};
(ii) D(SymlE) = { d ∈ {0, . . . , l} | d P l }.

Proof. A highest weight vector of SymlE is X⊗l and a highest weight

vector of SymlE is X l. A simple calculation yields

Mγ(X⊗l) =
l∑

d=0

γd(X⊗l−dY ⊗d)sym,

Mγ(X l) =
l∑

d=0

γd
(
l

d

)
X l−dY d.

Note that X⊗l−d ⊗ Y ⊗d and X l−dY d have weight l − 2d; using Lemma 11.8

and Lucas’s Theorem mentioned above, the defect sets are then clear. �

In the following proposition we use the defect set to distinguish non-

isomorphic symmetric powers; this sharpens the well-known Proposition 3.5.

Proposition 11.12. Let l ∈ N0. If K has prime characteristic p and

|K| > 1 + 2l then SymlE ∼= SymlE if and only if l < p or l = pε − 1 for

some ε ∈ N. If K has characteristic zero then SymlE ∼= SymlE for any l.

Proof. The condition that l < p or l = pε − 1 for some ε ∈ N is

equivalent to the condition that a P l for all a ∈ {0, . . . , l}: if l < p then

we clearly have a P l for all a ∈ {0, . . . , l}; if l > p then a P l for all

a ∈ {0, . . . , l} if and only if all base p digits of l are p − 1, which is if and

only if l = pε − 1.

By Lemma 11.11, if SymlE ∼= SymlE then a P l for all a ∈ {0, . . . , l},
as required. Conversely, consider the composition of the canonical maps

SymlE ↪→ E⊗l � SymlE
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which sends (X⊗l−a ⊗ Y ⊗a)sym ∈ SymlE to
(
l
a

)
X l−aY a. Supposing a P l

for all a ∈ {0, . . . , l}, or supposing instead the ground field has characteristic

zero, we have that
(
l
a

)
6= 0, and so this is an isomorphism. �

Lemma 11.13. Let m, l ∈ N0. Suppose that K has prime characteristic p

and that |K| > 1 + 2lm. Then

D(Symm SymlE) = {0, . . . , lm};

D(Symm SymlE) =


l∑

j=0

jmj

∣∣∣∣∣∣m0, . . . ,ml ∈ N0, m0 + · · ·+ml = m,

j P l for all j such that mj 6= 0

 ;

D(Symm SymlE) =


l∑

j=0

jmj

∣∣∣∣∣∣m0, . . . ,ml ∈ N0, m0 + · · ·+ml = m,

m0 + · · ·+ml is carry-free

 ;

D(Symm SymlE) =


l∑

j=0

jmj

∣∣∣∣∣∣∣∣
m0, . . . ,ml ∈ N0, m0 + · · ·+ml = m,

m0 + · · ·+ml is carry-free,

j P l for all j such that mj 6= 0

 .

Proof. We compute D(Symm SymlE). The highest weight vector is

(X l)m of weight lm, so it suffices to consider the expansion

Mγ(X l)m =
(
(X + γY )l

)m
=

 l∑
j=0

(
l

j

)
γjX l−jY j

m

=
∑

m0,...,ml∈N0
m0+···+ml=m

(
m

m0, . . . ,ml

) l∏
j=0

((
l

j

)
γjX l−jY j

)mj
.

The vectors of weight lm− 2d are precisely the elements
∏l
j=0(X l−jY j)mj

where
∑l

j=0 jmj = d, and such an element appears with nonzero coefficient

in this expansion if and only if the corresponding binomial and multinomial

coefficients are nonzero. Lucas’s Theorem then yields the claimed defect

set. The other parts follow similarly, with the binomial and/or multinomial

coefficients not appearing in the expansion when the first and/or second

symmetric powers are lower respectively. �
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Diverting our attention briefly from Theorem E, we conclude this sub-

section by showing that Theorem D is the unique modular generalisation of

Hermite reciprocity.

Proposition 11.14. Let ε > 1. Suppose that K has characteristic p and

|K| > 1 + 2pε+1. The eight modules obtained from Symp SympεE by ex-

changing the order of the symmetric powers and replacing upper symmetric

powers with lower symmetric powers are pairwise non-isomorphic, with the

exceptions of the dual isomorphisms

Symp SympεE ∼= Sympε SympE and Symp SympεE
∼= Sympε SympE,

and the possible exceptions of the dual isomorphisms

Symp Sympε E ∼= SympεSympE and Symp SympεE
∼= Sympε SympE.

In particular there are either four or six isomorphism classes amongst these

modules. If p = 2 the possible exceptions do not occur and there are precisely

six isomorphism classes of modules.

Proof. Routine applications of Lemma 11.13 yield

D(Symp SympεE) = {0, 1, . . . , pε+1} = D(Sympε SympE),

D(Symp SympεE) = { jpε | 0 6 j 6 p } = D(Sympε SympE),

D(Symp SympεE) = { jp | 0 6 j 6 pε } = D(Sympε SympE),

D(Symp SympεE) = {0, pε+1} = D(Sympε SympE).

Distinctness of defect sets rules out isomorphisms between these modules

except those stated in the theorem. Indeed the first pair of stated isomor-

phisms hold by modular Hermite reciprocity (Theorem D) and its dual.

By Proposition 3.7, Symp Sympε E
∼= (Symp SympεE)∗ and Sympε SympE

∼=
(Sympε SympE)∗, so either both or neither of the possible exceptions oc-

cur. Therefore it remains only to prove, when p = 2, that Sym2 Sym2εE 6∼=
Sym2εSym2E.

Again we use weight spaces, this time identifying a difference in the

KB-submodules generated by the 0-weight space. The 0-weight space of
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Sym2ε Sym2E is spanned by all (X2)2ε−1−a · (XY )2a · (Y 2)2ε−1−a for 0 6

a 6 2ε−1. Applying Mγ we get

(X2 + γ2Y 2)2ε−1−a ·
(
(X + γY )Y

)2a · (Y 2)2ε−1−a,

in which each factor has only even powers of X and Y . Thus the KB-

submodule of Sym2ε Sym2E generated by the 0-weight space has all weights

congruent to 0 modulo 4. Meanwhile the 0-weight space of Sym2 Sym2εE

contains (X2ε−1Y ) · (XY 2ε−1); applying Mγ to this we get (X + γY )2ε−1Y ·
(X + γY )Y 2ε−1, whose expansion has X2ε−1Y · γY 2ε with coefficient 1.

Therefore the KB-submodule of Sym2 Sym2ε E generated by the 0-weight

space has a nonzero weight space for the weight −2. �

If we work instead over the complex numbers, all eight modules in

Proposition 11.14 are isomorphic (by classical Hermite reciprocity and Propo-

sition 3.5).

11.3. Defect sets for hook Schur endofunctors

Our overall strategy is to use defect sets to distinguish the eight modules

in Theorem E. The reader is invited to refer ahead to §11.5 to see how this is

accomplished using the properties of defect sets identified in this subsection

and the next. For the remainder of this section, K denotes a field of prime

characteristic p. In this subsection we study the defect sets of the modules

∇(a+1,1b) SymlE and ∇(a+1,1b) SymlE; in the next subsection, we do the

same with ∆ in place of ∇.

To identify elements of the defect sets, we need to evaluate the action

of Mγ on the highest weight vectors. Working with ∇(a+1,1b), we can use

the simple multilinear expansion rule for the polytabloids exemplified in

Example 2.2. We also need the description of the action of Mγ on the

canonical bases of SymlE and SymlE, given by the following lemma.

Lemma 11.15. We have

(i) Mγ(X⊗i ⊗ Y ⊗l−i)sym =
i∑

j=0

γi−j
(
l − j
l − i

)
(X⊗j ⊗ Y ⊗l−j)sym,
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(ii) Mγ(XiY l−i) =
i∑

j=0

γi−j
(
i

j

)
XjY l−j.

Proof. Part (ii) is obvious from expanding (X + γY )iY l−i. For part

(i), observe that Mγ(X⊗i ⊗ Y ⊗l−i)sym is the sum of all
(
l
i

)
tensor products

Z1⊗· · ·⊗Zl where exactly i of the factors are X+γY and the remaining l− i
are Y . Expanding into pure tensors in X and Y , there are

(
l
i

)(
i
j

)
summands

with j factors of X and l − j factors of Y (each with coefficient γi−j). Then

since
(
l
j

)
such summands are required to form (X⊗j⊗Y ⊗l−j)sym, the number

of times this vector (each with coefficient γi−j) occurs is
(
l
i

)(
i
j

)(
l
j

)−1
=
(
l−j
l−i
)
.

�

Lemma 11.16. Let a, b, l ∈ N and suppose |K| > 1 + 2(a+ b+ 1)l− b(b+ 1).

If b 6≡ −1 mod p, then 1 ∈ D(∇(a+1,1b) SymlE).

Proof. Let tmax be the tableau of shape (a+ 1, 1b) labelling the highest

weight vector of ∇(a+1,1b) SymlE identified in Proposition 11.6; by this

proposition, its weight is (a+1)l+(l−1)+· · ·+(l−b) = (a+b+1)l−b(b+1)/2,

whence the bound on |K|. Let s be the tableau obtained from tmax by reducing

the entry in the top-left corner by 1. That is,

tmax =

l − b l · · · l

l−b+1

...

l − 1

l

and s =

l−b−1 l · · · l

l−b+1

...

l − 1

l

where an entry of i corresponds to the basis vector vi = (X⊗i ⊗ Y ⊗l−i)sym.

We compute Mγ e(tmax) by acting on the entry in each box of tmax, as in

Example 2.2, and then using Garnir relations (see Definition 1.8) to express

the result in the basis of semistandard polytabloids. Note that the Garnir

relations do not change the multiset of entries of a tableau; thus to identify

the coefficient of a semistandard polytabloid, it suffices to consider only those

tableaux with the same multiset of entries.
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By Lemma 11.15(i), Mγvi =
∑i

j=0 γ
i−j(l−j

l−i
)
vj . The action of Mγ on the

entries of tmax yields

l−b∑
j=0

γl−b−j
(
l−j
b

)
vj

l∑
j=0

γl−jvj · · ·
l∑

j=0
γl−jvj

l−b+1∑
j=0

γl−b+1−j(l−j
b−1

)
vj

...

l−1∑
j=0

γl−1−j(l−j
1

)
vj

l∑
j=0

γl−jvj

before multilinear expansion.

Consider how we can choose summands to obtain a tableau with the

same multiset of entries as s. Since vl must occur a + 1 times, we must

choose vl from the sums in the a + 1 boxes in which it appears; then vl−1

must occur once, so must be chosen in the only remaining sum in which it

appears; and so on, until we choose vl−b+1 from the box immediately below

the top-left box. Finally we must choose vl−b−1 from the box in the top-left.

The coefficients arising from this choice are
(
b+1

1

)
γ from the top-left box and

1s from every remaining box.

Since this sequence of choices gives the semistandard tableau s, no

rewriting using Garnir relations is necessary, and it follows that the coefficient

of e(s) in Mγ e(tmax) is (b+1)γ; this is nonzero by the hypothesis on b. �

Lemma 11.17. Let α, β, ε ∈ N with α 6= β and α, β < ε. Suppose |K| >
1 + 2(pε + pβ)(pα + pβ + 1)− pβ(pβ + 1). Then

(i) pβ+ε − pε ∈ D(∇(pα+1,1p
β

) Sympε+pβ E);

(ii) 1, pα, pβ, pα+ε − pε 6∈ D(∇(pα+1,1p
β

) Sympε+pβ E).

Proof. For part (i), we consider (as in the proof of Lemma 11.16) how

we can expand Mγ e(tmax) to obtain tableaux with certain multisets of entries.

This time we choose the tableau s obtained from tmax by reducing all the



11. CONJUGATE HOOK PARTITION NON-ISOMORPHISM 127

entries in the first column by pε, except the first and last. That is,

tmax =

pε pε + pβ · · · pε + pβ

pε + 1

...

pε+pβ−1

pε + pβ

and s=

pε pε + pβ · · · pε + pβ

1

...

pβ − 1

pε + pβ

where an entry of i corresponds to the basis vector wi = XiY pε+pβ−i ∈
SymlE. By Lemma 11.15(ii), Mγwi =

∑i
j=0 γ

i−j(i
j

)
wj . Acting by Mγ on

each entry of tmax yields

pε∑
j=0

γp
ε−j(pε

j

)
wj

pε+pβ∑
j=0

γ?
(
pε+pβ

j

)
wj · · ·

pε+pβ∑
j=0

γ?
(
pε+pβ

j

)
wj

pε+1∑
j=0

γ?
(
pε+1
j

)
wj

...

pε+pβ−1∑
j=0

γ?
(
pε+pβ−1

j

)
wj

pε+pβ∑
j=0

γ?
(
pε+pβ

j

)
wj

before multilinear expansion, where γ? denotes a power of γ omitted for

reasons of space.

Consider how we can choose summands to obtain a tableau with the

same multiset of entries as s. As before, since wpε+pβ must occur pα + 1

many times, we must choose wpε+pβ from the sums in the pα + 1 boxes in

which it appears. Thus there is a unique choice in each box at the bottom of

a column, and each such choice gives a coefficient of γ0 = 1.

For the remaining pβ boxes, note that for 0 6 i, j < pε, we have
(
pε+i
j

)
=(

i
j

)
which is nonzero if and only if j P i, which in particular requires j 6 i.

Thus, since β < ε, the only remaining sum in which wpβ−1 appears with
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nonzero coefficient is that in the penultimate box in the first column, so

it must be chosen there; continuing, we must choose wj from the sum in

box (j, 1) for all 2 6 j 6 pβ − 1. Each of these choices gives a coefficient

of γp
ε
. Finally, in the top-left box wpε must then be chosen. Thus there

is a unique way to obtain a tableau with the same multiset of entries as s

and the coefficient is γ(pβ−1)pε . Therefore, writing s′ for the semistandard

tableau obtained from s by sorting the first column into ascending order, the

coefficient of e(s′) in Mγ e(tmax) is ±γpβ+ε−pε 6= 0, as required.

For (ii), we recall that the module ∇(pα+1,1p
β

) Sympε+pβE is the image of

the partition-labelled exterior power
∧pβ+1Sympε+pβE ⊗ (Sympε+pβ E)⊗p

α

under the canonical quotient map |t| 7→ e(t). Moreover, if t is a tableau and

τ =
(
(1, j) (1, j + 1)

)
then, by the Garnir relation R(t,{(1,j)},{(1,j+1)}, we have

e(t) = e(t · τ); therefore if t and t′ are tableaux differing only in the order

of the entries in the top row (excluding the top-left box), then e(t) = e(t′).

Hence the quotient map factors through∧pβ+1 Sympε+pβ E ⊗ Sympα Sympε+pβ E.

It follows, using both parts of Lemma 11.9, that

D(∇(pα+1,1p
β

) Sympε+pβ E)

⊆ D(
∧pβ+1 Sympε+pβ E ⊗ Sympα Sympε+pβ E)

⊆ D(
∧pβ+1 Sympε+pβ E) +D(Sympα Sympε+pβ E).

Applying the Wronskian isomorphism
∧pβ+1 Sympε+pβE ∼= Sympβ+1 SympεE

from Theorem C, this becomes

D(∇(pα+1,1p
β

) Sympε+pβ E)

⊆ D(Sympβ+1 Sympε E) +D(Sympα Sympε+pβ E).

From Lemma 11.13 we have

D(Sympα Sympε+pβ E) = {0, pα+β, pα+ε, pα+β + pα+ε},

D(Sympβ+1 Sympε E) = { cpε | 0 6 c 6 pβ + 1 }.

It is clear that 1, pα, pβ and pα+ε − pε are not in this set. �
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11.4. Defect sets for hook Weyl endofunctors

In this subsection we show that ∆λV , viewed as a submodule of the

partition-labelled exterior power
∧λ′ V , contains the highest weight vector of∧λ′ V . We use this fact to compute the defect set D(∆(a+1,1b)V ) by working

in
∧(a+1,1b)′ V , which has a canonical basis labelled by column standard

column tabloids of shape (a+ 1, 1b) (see §1.5).

Lemma 11.18. Let V be a KSL2(K)-module with a basis {v1, . . . , vl} of

weight vectors, in which vi has weight ri, for some integers r1 6 · · · 6 rl−1 <

rl. Let λ be any partition, and let tmax be the semistandard tableau obtained by

filling each column from the bottom with integers decreasing from l. Suppose

that |K| > 1 + 2
∑

b∈[λ] rtmax(b). Then the unique highest weight vector |tmax|
of
∧λ′ V is contained in ∆λV . In particular, D(∆λV ) = D(

∧λ′ V ).

Proof. Let t′max be the tableau obtained from tmax by reversing the

order of each column; thus t′max(i, j) = l + 1 − i for all i, j. In particular,

the row stabiliser of t′max is trivial and hence e(t′max) = |t′max| = ±|tmax|, so

|tmax| ∈ ∆λV as required. �

Remark 11.19. It is possible to deduce this result without the complete

description of ∆λV from §3. It suffices to observe that ∆λV , defined as

the dual (∇λV ◦)◦, has highest weight equal to the highest weight of
∧λ′ V

(each with weight space of dimension 1), and that the map e∗ from the proof

of Proposition 3.13 used to view ∆λV as a submodule of
∧λ′ V does not

annihilate the unique highest weight vector (see [McDW22, Lemma 6.18]).

Lemma 11.20. Let a, b, l ∈ N. Suppose that |K| > 1+2(a+b+1)l−b(b+1).

Then 1 ∈ D(∆(a+1,1b) SymlE).

Proof. In light of Lemma 11.18, the claim is equivalent to

1 ∈ D
(∧b+1 SymlE ⊗ (SymlE)⊗a

)
.

A unique highest weight vector of
∧b+1 SymlE ⊗ (SymlE)⊗a is the column

tabloid for the tableau tmax from Lemma 11.16; let s be the column standard
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tableau obtained from tmax by reducing the entry in box (1, 2) by 1. Then

|tmax| =
(
(X⊗l−b⊗Y ⊗b)sym ∧ · · · ∧X⊗l

)
⊗
(
X⊗l

)⊗a
,

|s| =
(
(X⊗l−b⊗Y ⊗b)sym ∧ · · · ∧X⊗l

)
⊗ (X⊗l−1⊗Y )sym ⊗

(
X⊗l

)⊗a−1
.

The coefficient of |s| in Mγ |tmax| is the coefficient of (X⊗l−1 ⊗ Y )sym in

MγX
⊗l, which is γ. Thus |s| is in the KB-submodule generated by the

highest weight vector, giving the required element of the defect set. �

Lemma 11.21. Let α, β, ε ∈ N with α 6= β and α, β < ε. Suppose that

|K| > 1 + 2(pε + pβ)(pα + pβ + 1)− pβ(pβ + 1). Then

(i) pβ ∈ D(∆(pα+1,1p
β

) Sympε+pβ E);

(ii) 1, pα 6∈ D(∆(pα+1,1p
β

) Sympε+pβ E).

Proof. As in the proof of Lemma 11.20, we use Lemma 11.18 to work in∧pβ+1 Sympε+pβ E ⊗ (Sympε+pβ E)⊗p
α

rather than ∆(pα+1,1p
β

) Sympε+pβ E.

The highest weight vector of
∧pβ+1 Sympε+pβ E ⊗ (Sympε+pβ E)⊗p

α
is

the column tabloid for the tableau tmax from Lemma 11.17; let s be the

column standard tableau obtained from tmax by reducing the entry in box

(1, 2) by pβ. Then

|tmax| =
(
XpεY pβ ∧ · · · ∧Xpε+pβ

)
⊗
(
Xpε+pβ

)⊗pα
,

|s| =
(
XpεY pβ ∧ · · · ∧Xpε+pβ

)
⊗XpεY pβ ⊗

(
Xpε+pβ

)⊗pα−1
.

The coefficient of |s| in Mγ |tmax| is the coefficient of XpεY pβ in MγX
pε+pβ ,

which is γp
β(pε+pβ

pβ

)
6= 0. Thus |s| is in the KB-submodule generated by the

highest weight vector, proving (i).

For (ii), we use Lemma 11.9(ii) and the Wronskian isomorphism (Theo-

rem C) to find that

D(
∧pβ+1 Sympε+pβ E ⊗ (Sympε+pβ E)⊗p

α
)

⊆ D(
∧pβ+1 Sympε+pβ E) +D(Sympβ+pε E) + · · ·+D(Sympβ+pε E)

= D(Sympβ+1 Sympε E) +D(Sympβ+pε E) + · · ·+D(Sympβ+pε E)
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where there are pα copies of D(Sympβ+pε E). Lemmas 11.11 and 11.13 give

D(Sympβ+pε E) = {0, pβ, pε, pβ + pε},

D(Sympβ+1 Sympε E) = { cpε | 0 6 c 6 pβ + 1 }.

Since α < ε and α 6= β, it is clear that 1 and pα are not in this set. �

Remark 11.22. We remark on two interesting facts about ∆λV and its

defect set, which can be used to give alternative proofs of the above lemmas

in special cases.

(i) Suppose K is infinite and V = E is the natural representation of

GLn(K). The module ∆λE is generated by its unique highest weight vector

(as shown in [EGS08, (5.3b)], and noted earlier in Remark 3.14). By [Hum75,

Proposition 31.2], the submodule of
∧λ′ E generated by its highest weight

vector is the same whether we act by B or all of SL2(K); thus in this case we

have that every weight of ∆λE contributes to the defect set. That is, writing

m for the highest weight, we have D(∆λV ) = { d ∈ N0 | (∆λE)m−2d 6= 0 }.
(ii) Using Lemma 11.9 and the result from Lemma 11.18 that D(∆λV ) =

D(
∧λ′ V ), we find that D(∆λV ) ⊆∑λ1

j=1D(
∧λ′j V ). When K is algebraically

closed, it can be shown that this is an equality: indeed, under the conditions

of Lemma 11.9, there is equality D(V ⊗W ) = D(V )+D(W ) because any two

matrices Mγ and Mδ are conjugate in SL2(K) by diagonal matrices, and so,

up to a scalar, Mγv ⊗Mδw is equal to Mκ(v ⊗ w) for some suitable κ ∈ K.

11.5. Proof of Theorem E

We are now ready to prove the main theorem of this section.

Theorem E (Obstructions to the conjugate hook partition isomorphism).

Let α, β, ε ∈ N with α < β < ε. If K has characteristic p and |K| >
1 + 2(pε + pβ)(pα + pβ + 1)− pα(pα + 1), then the eight representations of

SL2(K) obtained from ∆(pα+1,1p
β

) Sympε+pβ E by any combination of

• replacing ∆ with ∇,

• replacing Sym− with Sym−,

• swapping α and β,

are pairwise non-isomorphic.



132 III. MODULAR PLETHYSTIC ISOMORPHISMS

Proof. From Lemmas 11.17 and 11.21 we have

1, pα, pβ, pα+ε − pε 6∈ D(∇(pα+1,1p
β

) Sympε+pβ ) 3 pβ+ε − pε

1, pα, pβ, pβ+ε − pε 6∈ D(∇(pβ+1,1p
α

) Sympε+pα) 3 pα+ε − pε

1, pα 6∈ D(∆(pα+1,1p
β

) Sympε+pβ ) 3 pβ

1, pβ 6∈ D(∆(pβ+1,1p
α

) Sympε+pα) 3 pα

and from Lemmas 11.16 and 11.20 we have that 1 lies in each of the defect sets

where Sym− is replaced with Sym−. Thus it is clear that the four modules

whose defect sets are displayed above are pairwise non-isomorphic, and that

none is isomorphic to any of the four modules obtained by replacing Sym−

with Sym−. Finally, by applying contravariant duality to an isomorphism

between any two of the latter four modules we would obtain an isomorphism

between two modules defined using Sym−. Therefore no two of the latter

four modules are isomorphic. �



CHAPTER IV

The Specht module under the

inverse Schur functor

As usual, let K be a field, let n, r ∈ N, and we consider modules for the

symmetric group Sr and the general linear group GLn(K).

The main results of this chapter are the following descriptions of the

image of the Specht module under the inverse Schur functor G⊗ = Gn⊗. Note

that although the definition of the Schur functor F (Definition 6.5) requires

n > r and that K is infinite, the definition of G⊗ (Definition 6.12) does not,

and the main results of this chapter hold without these requirements.

Theorem F. Suppose K has characteristic not 2 and let λ be a partition

of r. Then there is an isomorphism G⊗(Sλ) ∼= ∇λE.

Theorem G. Suppose K has characteristic 2 and let λ be a partition of

r. There is a surjection G⊗(Sλ) � ∇λE, which is an isomorphism if λ is

2-regular, or if λ1 = λ2 > λ3 + 2 and λ minus its first part is 2-regular.

Supposing also n > r − 2, if λ is not of this form then the surjection is not

an isomorphism.

Here E is the natural n-dimensional representation of GLn(K) and Sλ

is the Specht module for Sr. These results appear in the author’s [McD21].

Our approach utilises our constructions of the Specht and dual Weyl

modules as quotients of suitable exterior powers by the Garnir relations. In

§12 we obtain a description of the image of the Specht module as a quotient

space similar to the dual Weyl module, with an important difference in

characteristic 2: repeated entries in a column of a tableau do not cause

the labelled element to vanish. We deduce that the isomorphism holds in

characteristics other than 2 always, obtaining Theorem F, and that it holds

in characteristic 2 if and only if every element labelled by a tableau with a

repeated entry in a column can be written as a linear combination of the

133
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‘Garnir relations’ in this setting (skew Garnir relations). Assessing for what

partitions this condition holds is the goal of §13.

We prove various additional results about the image of the Specht module

in characteristic 2 in §14: we demonstrate that the image need not have a

filtration by dual Weyl modules, we bound the dimension of the kernel of

the quotient map in Theorem G, and we give some explicit descriptions for

particular cases. We also deduce the following corollary, identifying some

new examples of indecomposable Specht modules in characteristic 2.

Corollary H. Suppose K is infinite and has characteristic 2. Let λ be a

partition such that λ1 = λ2 > λ3 + 2 and such that λ minus its first part is

2-regular. Then Sλ is indecomposable.
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12. Quotient construction of the image of the Specht module

In this section we present an explicit model for G⊗(Sλ) in all characteris-

tics. The isomorphism G⊗(Sλ) ∼= ∇λE stated in Theorem F for characteristics

not 2 follows immediately.

12.1. Skew column tabloids

To describe the image of the Specht module under G⊗, we require a

modified notion of column tabloid, which we introduce in this subsection.

Recall that in §1.5 we defined a column tabloid as an element t+ JAlt in

the quotient Tbxλ(V )/JAlt, where JAlt is the subspace

JAlt = 〈x ∈ Tbxλ(V ) | x · τ = x for some transposition τ ∈ CPP(λ) 〉K .

We now consider a different subset to quotient by. Define

JSk = 〈x · σ − x sgnσ | x ∈ Tbxλ(V ), σ ∈ CPP(λ) 〉K .

Note that JSk ⊆ JAlt with equality if charK 6= 2. In characteristic 2, the

additional elements of JAlt are the tableaux with repeated entries in a column;

that is:

JAlt = JSk + 〈 t ∈ Tbxλ(V ) | t has a repeated entry in a column 〉K .

Definition 12.1 (Skew column tabloid). The skew column tabloid corre-

sponding to a tableau t is the element t+ JSk in the quotient Tbxλ(V )/JSk.

When we wish emphasise that a column tabloid as defined in §1.5 is an

element of Tbxλ(V )/JAlt and not a skew column tabloid, we describe it as

an alternating column tabloid.

We write the skew column tabloid corresponding to a tableau t as ||t||,
and draw a skew column tabloid by deleting the horizontal lines from a

drawing of the corresponding tableau and double-striking the vertical lines,

as depicted below in the case λ = (3, 2).

t =
1 2 4

3 5
=⇒ ||t|| = 1 2 4

3 5
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Depending on the characteristic, the space of skew column tabloids is

isomorphic as a KG-module either to an exterior power or symmetric power:

Tbxλ(V )�JSk
∼=


∧λ′ V if charK 6= 2,

Symλ′ V if charK = 2.

For convenience, we define the skew symmetric power Sk− to be the symmetric

power Sym− in characteristic 2 and the exterior power
∧− otherwise. We

use Skλ
′
V to denote the space of skew column tabloids.

As is already clear, the definitions of alternating column tabloids and

skew column tabloids agree in characteristics other than 2. The definitions

also agree if we restrict to tableaux of symmetric type.

Both alternating and skew column tabloids have the property that, for

σ ∈ CPP(λ), the equalities

|t · σ| = |t| sgnσ

||t · σ|| = ||t|| sgnσ

hold. The key difference between the two definitions of tabloids is that

alternating column tabloids furthermore have the property that if t has a

repeated entry in a column then |t| = 0, whereas skew column tabloids do

not have this property in characteristic 2. It is for these properties that the

tabloids are named: an alternating column tabloid resembles an alternating

multilinear form, whereas a skew column tabloid resembles a skew symmetric

multilinear form.

There is a surjection δ : Skλ
′
V → ∧λ′ V defined by K-linear extension of

δ : ||t|| 7→ |t|.

This map is easily seen to be G-equivariant. The kernel of δ is the subspace

spanned by skew column tabloids with repeated column entries.

We define skew Garnir relations analogously to Garnir relations, as

follows.

Definition 12.2 (Skew Garnir relations). Let (t, A,B) and S be as in the

definition of a Garnir relation from §1.7: t is a tableau of shape λ with
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entries in B, 1 6 j < j′ 6 λ1, A ⊆ colj(λ) and B ⊆ colj′(λ) are such that

|A| + |B| > λ′j , and S is a set of left coset representatives for SA × SB in

SAtB. Then the skew Garnir relation labelled by (t, A,B) is

RSk
(t,A,B) =

∑
τ∈S
||t · τ || sgn τ.

Let SkGRλ(V ) denote the subspace of Skλ
′
V which is spanned by the Garnir

relations.

If we wish to emphasise that a Garnir relation as defined in Definition 1.8

is an element of
∧λ′ V and not a skew Garnir relation, we describe it as an

alternating Garnir relation.

Just as for the alternating Garnir relations, a skew Garnir relation does

not depend on the choice of coset representatives, and the K-subspace

SkGRλ(V ) is moreover a KG-submodule because the group action commutes

with the place permutation action.

We likewise define certain distinguished skew Garnir relations.

Definition 12.3 (Skew snake relations and basic skew snake relations). A

skew Garnir relation is called a skew snake relation under the same conditions

described for Garnir relations in Definition 1.10: if, in the notation of

Definition 12.2, j′ = j + 1 and there exists i such that A = { (x, j) | i 6
x 6 λ′j } and B = { (x, j′) | 1 6 x 6 i }; in this case, we may also label

the Garnir relation by (t, i, j). Given a function Φ on column semistandard

tableaux which are not row semistandard whose output on such a tableau t

is a box (i, j) such that t(i, j) > t(i, j + 1), a skew snake relation labelled by

(t, i, j) is called Φ-basic if t is column semistandard but not row semistandard

and (i, j) = Φ(t) (that is, under the same conditions described for Garnir

relations in Definition 2.14, with “column standard” replaced with “column

semistandard”).

The image of a skew Garnir relation RSk
(t,A,B) under δ : Skλ

′
V → ∧λ′ V is

of course the Garnir relation R(t,A,B). However, RSk
(t,A,B) may have nonzero

summands which vanish under δ.
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12.2. The image of the Specht module

We can now use the skew column tabloids and the skew Garnir relations

to model the image of the Specht module under the inverse Schur functor.

Recall W denotes the natural permutation representation of Sr, with the

property that Sλ = ∇λsymW , and that E denotes the natural representation

of GLn(K). We view the basis of W as [r]; let B denote a basis for E.

Lemma 12.4. Let n and r be any integers.

(i) There is an isomorphism G⊗(
∧λ′

symW ) ∼= Skλ
′
E.

(ii) There is a short exact sequence

0 SkGRλ(E) Skλ
′
E G⊗(Sλ) 0

in the category of KGLn(K)-modules.

Proof. [(i)] Given a pure tensor x = x1 ⊗ · · · ⊗ xr ∈ E⊗r whose factors

are basis elements in B, and given also a tableau u of symmetric type of

shape λ with entries in [r], let xu denote the tableau of shape λ with entries

in B defined by

xu(b) = xu(b)

for all b ∈ [λ].

Fix any tableau s of symmetric type with entries in [r]. We claim there

are mutually inverse KGLn(K)-isomorphisms ϕ : G⊗(
∧λ′

symW )→ Skλ
′
V and

ψ : Skλ
′
V → G⊗(

∧λ′

symW ) given by K-linear extension of

ϕ(x⊗KSr |u|) = ||xu||

and

ψ(||t||) =
⊗
i∈[r]

t(s−1i)⊗KSr |s|

for all elements x and u as above and all tableaux t with entries in B. For

example, with λ = (3, 2) there is a correspondence between elements

x1 ⊗ · · · ⊗ x5 ⊗KSr
1 2 4

3 5
↔ x1 x2 x4

x3 x5

under ϕ and ψ.
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Verifying that ϕ and ψ are well-defined and mutually inverse consists

mostly of bookkeeping; we perform this task in the following pair of claims.

Recall that Sr acts on the left of W , and hence entrywise on tableaux

with entries in [r] on the left, and that we denote this action by concatenation;

meanwhile S[λ] acts by place permutation on tableaux on the right, denoted

by a central dot. To translate between these groups (which unfortunately

requires a mix between writing tableaux as functions on the left and writing

permutations on the right), we use the chosen tableau s: given an element

τ ∈ S[λ], we define τ s ∈ Sr by

iτ s = s
(

(s−1i)τ
)
.

For convenience we write τ−s = (τ−1)s = (τ s)−1. Note that τ ss = s · τ
(because (τ ss)(b) =

(
s(b)

)
τ−s = s(bτ−1) = (s · τ)(b) for any b ∈ [λ]).

Claim 12.4.1. The maps ϕ and ψ are well-defined.

Proof. For ϕ, we use the universal property of the tensor product.

Consider the K-bilinear map E⊗r ×∧λ′

symW → Skλ
′
V defined by extension

of (x, |u|) 7→ ||xu||; indeed this is well-defined because for any τ ∈ S[λ] we

have xu·τ (b) = xu(bτ−1) = (xu · τ)(b) for all b ∈ [λ]. The map is also Sr-

balanced because for any σ ∈ Sr we have xσu(b) = xu(b)σ−1 = (x · σ)u(b) for

all b ∈ [λ]. This bilinear map induces the map ϕ.

For ψ, observe that for τ ∈ S[λ] we have that

(t · τ)(s−1i) = t
(

(s−1i)τ−1
)

= t
(
s−1(iτ−s)

)
by definition of −s, and hence

ψ(||t · τ ||) =
⊗
i∈[r]

t
(
s−1(iτ−s)

)
⊗KSr |s|

=

(⊗
i∈[r]

t
(
s−1i

))
· τ s ⊗KSr |s|

=
⊗
i∈[r]

t(s−1i)⊗KSr τ s|s|

=
⊗
i∈[r]

t(s−1i)⊗KSr |s · τ |.
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Thus if τ ∈ CPP(λ) then ψ(||t · τ ||) = sgn(τ)ψ(||t||) as required. �

Claim 12.4.2. The maps ϕ and ψ are mutually inverse.

Proof. To see that ϕψ = id, observe that if t is a tableau with entries

in B, then the element x =
⊗

i∈[r] t(s
−1i) is such that xs(b) = xs(b) =

t(s−1s(b)) = t(b), so xu = t.

To see that ψϕ = id, suppose x ∈ E⊗r is a pure tensor of basis vectors

and that u is any tableau of symmetric type with entries in [r]. Note that

there exists a unique place permutation τ ∈ S[λ] such that s · τ = u, that is,

such that u(b) = s(bτ−1) for all b ∈ [λ]. Then

xu(s−1i) = xu(s−1i) = x
s
(

(s−1i)τ−1
) = xiτ−s = (x · τ s)i,

and thus

ψϕ(x⊗KSr |u|) =
⊗
i∈[r]

xu(s−1i)⊗KSr |s|

= (x · τ s)⊗KSr |s|

= x⊗KSr |s · τ |

= x⊗KSr |u|

as required. �

It is clear from multilinear expansion of tableaux that ϕ and ψ are

GLn(K)-equivariant. This completes the proof of (i).

[(ii)] By Proposition 2.16, there is a short exact sequence

0 GRλsym(W )
∧λ′

symW Sλ 0ι e|sym

where ι denotes the inclusion map. Since G⊗ is right-exact, applying it to

this sequence we obtain an exact sequence ending

G⊗(GRλsym(W )) G⊗(
∧λ′

symW ) G⊗(Sλ) 0.
G⊗(ι) G⊗(e|sym)

Applying the isomorphism ϕ from (i), we have a short exact sequence

0 imϕG⊗(ι) Skλ
′
V G⊗(Sλ) 0
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and it suffices to show that imϕG⊗(ι) = SkGRλ(V ).

The image imϕG⊗(ι) is spanned by elements of the form

ϕ(x⊗KSr R(t,A,B))

where t is a tableau with entries in [r], A and B are subsets of [λ] as in

the definition of a Garnir relation, and x is a pure tensor whose factors are

basis elements of E. Fix such t, A, B and x, and let S be a set of left coset

representatives for SA × SB in SAtB. Then, using that xt·σ = xt · σ for any

σ ∈ S[λ], we have

ϕ(x⊗KSr R(t,A,B)) =
∑
τ∈S

ϕ(x⊗KSr |t · τ | sgn τ)

=
∑
τ∈S
||xt·τ || sgn τ

=
∑
τ∈S
||xt · τ || sgn τ,

which is a skew Garnir relation labelled by (xt, A,B). Since also any tableau

with entries in B can be written in the form xt for suitable x and t, we have

that imϕG⊗(ι) = SkGRλ(V ) as required. �

Proposition 12.5. The following diagram in the category of KGLn(K)-

modules is commutative with exact rows and exact columns. In particular,

there is a surjection G⊗(Sλ)� ∇λE which is an isomorphism if and only if

ker δ ⊆ SkGRλ(E).

0 0 0

0 ker δ|GR SkGRλ(E) GRλ(E) 0

0 ker δ Skλ
′
E

∧λ′ E 0

0 ker δ�ker δ|GR G⊗(Sλ) ∇λE 0

0 0 0

δ|GR

δ

e
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Proof. Clearly the first column and the first two rows are exact and

the top two squares commute. The third column is exact by Proposition 2.13

and the second column is exact by Lemma 12.4.

The existence of the maps in the third row and the commutativity of the

bottom two squares follow from the universal properties of the objects in

the third row as cokernels. The map from G⊗(Sλ) to ∇λE is surjective by

surjectivity of eδ and the commutativity of the diagram. Exactness at the

remaining two objects in the third row follows from (a degenerate case of)

the snake lemma.

It is clear from the diagram that the surjection G⊗(Sλ)� ∇λE is injective

if and only if ker δ = ker δ|GR, or equivalently ker δ ⊆ SkGRλ(E). �

From this proposition we can immediately identify the image of the

Specht module in characteristics other than 2 (when δ is an isomorphism),

obtaining the first main result of this chapter.

Theorem F. Suppose K has characteristic not 2 and let λ be a partition

of r. Then there is an isomorphism G⊗(Sλ) ∼= ∇λE.
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13. Combinatorics of skew Garnir relations

The goal of this section is to identify for which partitions the necessary

and sufficient condition from Proposition 12.5 holds in characteristic 2. This

condition asserts that a skew column tabloid with a repeated column entry

can be written as a linear combination of skew Garnir relations.

Our classification of partitions is proven in §13.2. To reach it, we must

first identify a spanning set for the space of skew Garnir relations, which we

do in §13.1.

Although our application concerns representations of the general linear

group, in this subsection the group action is irrelevant, so we state our results

for an arbitrary representation V of an arbitrary group G, of dimension d

and with ordered basis B. We work in characteristic 2 throughout.

13.1. Spanning set for the skew Garnir relations

We begin by observing that the basic skew snake relations are not

sufficient to span the space of skew Garnir relations.

Example 13.1. Suppose λ = (2, 1) and t =
1 1
1

. Then

RSk
(t,1,1) =

1 1

1
+

1 1

1
+

1 1

1
=

1 1

1

which is nonzero (in characteristic 2). By contrast, R(t,1,1) = 0.

Since t is the unique tableau of its weight, and since there is only one

possible choice of subsets of [λ] to define a Garnir relation, the relation RSk
(t,1,1)

is the unique (nonzero) skew Garnir relation of this weight. However, RSk
(t,1,1)

is not basic, and so cannot be written as a linear combination of basic skew

snake relations.

The additional skew snake relations we require to form a spanning set

are defined below. To prove that they span, we introduce additional symbols

to force the tableaux to have distinct entries, then use the basis for Garnir

relations of symmetric type identified in Proposition 2.17 and map back

down to the case of interest.
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Definition 13.2 (Supplementary skew snake relations). A skew snake re-

lation labelled by (t, i, j) is called supplementary if t is row-and-column

semistandard and t(i, j) = t(i, j + 1).

Proposition 13.3. The basic and supplementary skew snake relations to-

gether span SkGRλ(V ).

Proof. Recall that the set in which our tableaux take entries is an

ordered basis B of V . Let B∨ = B × [r], ordered lexicographically, and let

V ∨ be the K-vector space with basis B∨. Let π1 : B∨ → B be the surjection

defined by π1(x, k) = x. Extend π1 to a map on tableaux by acting entrywise.

This map is also surjective, and remains so on restriction to tableaux of

symmetric type: given any tableau t with entries in B, there exists a tableau

t∨ with entries in B∨ such that π1(t∨) = t, formed by replacing each x ∈ B
with (x, k) for some k ∈ [r], and these k ∈ [r] can be chosen such that all

entries in t∨ are distinct.

The map π1 induces a K-linear surjection π̂1 : GRλsym(V ∨)→ SkGRλ(V )

defined by sending each column tabloid of symmetric type |t∨| to the skew

column tabloid ||π1(t∨)||; that is, π̂1(R(t∨,A,B)) = RSk
(π1(t∨),A,B)) for any label

(t∨, A,B) for a Garnir relation in GRλsym(V ∨). This is well-defined because

for tableaux of symmetric type t∨1 and t∨2 , there is equality |t∨1 | = ±|t∨2 | if

and only if t∨1 and t∨2 have the same column sets (this is not the case for

general tableaux: we may have equality |t∨1 | = 0 = |t∨2 | in
∧λ′ V ∨ despite an

inequality ||π1(t∨1 )|| 6= ||π1(t∨2 )|| in Skλ
′
V , when the tableaux have distinct

column sets but some repeated column entries).

Let Φ be the function with respect to which we consider skew snake

relations in SkGRλ(V ) basic. Choose a function Φ∨ to consider snake relations

in GRλsym(V ∨) basic with respect to, chosen with the property that Φ∨(t∨) =

Φ(π1(t∨)) whenever Φ(π1(t∨)) is defined (that is, whenever π1(t∨) is not

row semistandard). Indeed this is possible: when it is defined, the box

Φ(π1(t∨)) = (i, j) satisfies t∨(i, j) > t∨(i, j + 1) by considering the first value

of the pair in each box (that is, the image under π1).
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Proposition 2.17 tells us that, in GRλsym(V ∨), the Φ∨-basic snake relations

of symmetric type form a basis. Therefore the image of this set under π̂1 is a

spanning set for SkGRλ(V ). It suffices to show that this image is the union

of the sets of basic and supplementary skew snake relations.

Consider a skew snake relation RSk
(t,i,j) ∈ SkGRλ(V ) which is either Φ-basic

or supplementary. We aim to show there exists a tableau t∨ with entries in

B∨ such that π1(t∨) = t and (i, j) = Φ∨(t∨) (and hence R(t∨,i,j) is Φ∨-basic

and its image under π̂1 is RSk
(t,i,j)). If RSk

(t,i,j) is Φ-basic, then choose any t∨

such that π1(t∨) = t; since t is not row semistandard, neither is t∨, and so

by choice of Φ∨ we have Φ∨(t∨) = Φ(t) = (i, j). If RSk
(t,i,j) is supplementary,

then t is row-and-column semistandard, and so for any choice of t∨ such

that π1(t∨) = t we have that the first values of the entries of t∨ weakly

increase along rows and columns. Choose the second values of the entries

of t∨ such that t∨(i, j) > t∨(i, j + 1) and such that elsewhere the second

values strictly increase along rows and columns (for example, by filling in the

entries left to right of each row in turn, then swapping the entries of (i, j)

and (i, j + 1)). Then i and j are unique such that t∨(i, j) > t∨(i, j + 1), and

hence Φ∨(t∨) = (i, j).

Now consider a Φ∨-basic snake relation R(t∨,i,j) ∈ GRλsym(V ∨). We aim to

show that the skew snake relation π̂1(R(t∨,i,j)) = RSk
(π1(t∨),i,j) is either Φ-basic

or supplementary. If π1(t∨)(i, j) > π1(t∨)(i, j + 1), then π1(t∨) is not row

semistandard and, by choice of Φ∨, we have that (i, j) = Φ∨(t∨) = Φ(π1(t∨))

and hence (π1(t∨), i, j) labels a Φ-basic skew snake relation. If π1(t∨)(i, j) =

π1(t∨)(i, j + 1), then π1(t∨) is row semistandard (or else Φ(π1(t∨)) would

be defined and not equal to (i, j) = Φ∨(t∨)), and so (π1(t∨), i, j) labels a

supplementary skew snake relation. �

The spanning set identified in Proposition 13.3 is in general not a basis:

the supplementary skew snake relations may not be linearly independent.

Indeed, a supplementary skew snake relation may even be zero, as evidenced

in the following example.
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Example 13.4. Suppose λ = (2, 1, 1) and t =
1 1
2
2

. Then

RSk
(t,1,1) =

1 1

2

2

+

1 1

2

2

+

1 2

1

2

+

1 2

1

2

= 0.

It is plain to see that in fact all skew Garnir relations labelled by tableaux

of this weight vanish; thus no tabloid of this weight appears with nonzero

coefficient in any skew Garnir relation.

Nevertheless it is useful to have the following analogue for skew snake

relations of Lemma 2.10 (which demonstrated the linear independence of the

basic alternating snake relations). In particular, it shows that the basic skew

snake relations are linearly independent.

Lemma 13.5. Let t be a column semistandard tableau, and suppose (i, j) in

such that t(i, j) > t(i, j + 1). Then

RSk
(t,i,j) = mt||t||+

∑
u<ct

mu||u||

for some elements mu in the subring of K generated by 1. If t(i, j) > t(i, j+1),

then mt = 1. If t(i, j) = t(i, j + 1) and a and b are the multiplicities of t(i, j)

in the sets defining the Garnir relation

A = { (x, j) | i 6 x 6 λ′j } and B = { (x, j + 1) | 1 6 x 6 i }

respectively, then mt =
(
a+b
a

)
.

Proof. Analogously to the proof of Lemma 2.10, we observe that the

sets A and B defining the Garnir relation satisfy

t(1, j + 1) 6 . . . 6 t(i, j + 1) 6 t(i, j) 6 t(i+ 1, j) 6 . . . 6 t(λ′j , j),

and hence that t · σ <c∼ t for any σ ∈ SAtB. (The boxes in A and B

and the inequalities between their entries are illustrated in the margin.)

j j+1

1

i

λ′j

6
6

6

>

6
6

If

t(i, j) > t(i, j + 1), then t · σ ∼c t holds if and only if σ ∈ SA × SB. If

t(i, j) = t(i, j + 1), then t · σ ∼c t holds for precisely those permutations

which, modulo SA × SB, permute only the boxes containing t(i, j). The
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number of cosets of such permutations is the number of ways to choose a

of the a+ b copies of the repeated entry to include in the left-hand column.

�

13.2. Writing column tabloids with the Garnir relations

In this subsection, we characterise when there is containment ker δ ⊆
SkGRλ(V ) in characteristic 2. When V = E, this containment is equivalent

to the existence of an isomorphism G⊗(Sλ) ∼= ∇λE by Proposition 12.5.

Recall δ : Skλ
′
V → ∧λ′ V is the map ||t|| 7→ |t| (defined in §12.1). The

kernel of δ is spanned by skew column tabloids with a repeated entry in a

column. We have already seen that such a tabloid may or may not lie in

the space of skew Garnir relations: Example 13.1 exhibited a skew column

tabloid in the kernel of δ which is equal to a skew Garnir relation, whilst

Example 13.4 exhibited a skew column tabloid in the kernel of δ that cannot

be written as a linear combination of skew Garnir relation because all relations

of that weight vanish. We further illustrate this behaviour with the following

example.

Example 13.6. Fix an element x ∈ B, and let t be the tableau whose entries

are all x. Provided λ has at least two rows, we have ||t|| ∈ ker δ. Meanwhile,

t is the unique tableau of its weight, so it labels all skew Garnir relations of

its weight. All summands of such relations are equal to ||t||, so

RSk
(t,A,B) =

||t|| if the number of summands
(|A|+|B|
|A|

)
is odd;

0 otherwise.

Suppose λ is a hook partition which has at least two rows and two

columns. Let a > 2 and l > 2 be such that λ = (a, 1l−1). Clearly the

skew Garnir relations involving only columns of length 1 have exactly two

summands and hence are zero. The number of summands in a skew Garnir

relation involving the first column is
(
l+1
1

)
= l + 1, which is odd if and only

if l is even. Thus ||t|| ∈ SkGRλ(V ) holds if and only if l is even.
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We now proceed with classifying when ker δ ⊆ SkGRλ(V ). Recall we say

that a partition is 2-regular if it has no repeated (positive) parts, and that it

is 2-singular otherwise.

Lemma 13.7. Suppose λ is 2-regular, or λ1 = λ2 > λ3 + 2 and λ minus its

first part is 2-regular. Then ker δ ⊆ SkGRλ(V ).

Proof. First note that ker δ = 0 if λ has exactly one row; the lemma

holds trivially in this case, so we may assume that λ has at least two rows,

and hence that there exist tableaux t such that ||t|| ∈ ker δ. Since λ has

at least two rows, if λ is 2-regular then λ1 > λ2 > λ3; thus under either

hypothesis we have λ1 > λ3 + 2.

Let t be a tableau such that ||t|| ∈ ker δ. Then t has at least one column

with repeated entries; let j be the index of the rightmost column in which

t has repeated entries. Let a1 and a2 be boxes in column j such that

t(a1) = t(a2). We proceed by downward induction on j.

Suppose j > λ3. Since λ1 > λ3 + 2, there exists some j′ 6= j such that

λ3 < j′ 6 λ1. We have λ′j 6 2 and λ′j′ 6 2. Let b be any box in column j′,

and set A = {a1, a2} and B = {b} (or vice versa if j′ < j). Then (t, A,B)

labels a Garnir relation, and

RSk
(t,A,B) = ||t||+ ||t · (a1 b)||+ ||t · (a2 b)||

= ||t||

since t(a1) = t(a2). Thus ||t|| ∈ SkGRλ(V ) as required.

Now suppose j 6 λ3. Since λ minus its first part is 2-regular, we have

that column j is at most one box longer than column j+ 1. Set A = {a1, a2}
and B = colj+1[λ]. Then (t, A,B) labels a Garnir relation, and

RSk
(t,A,B) = ||t||+

∑
{b1,b2}⊆B

||t · (a1 b1)(a2 b2)||

because the summands corresponding to permutations where only one box

of A is moved cancel out. The tableaux t · (a1 b1)(a2 b2) in the above sum

have a repeated entry in column j + 1, so by the inductive hypothesis their

skew column tabloids lie in SkGRλ(V ). Hence so does ||t||. �
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Lemma 13.8. Suppose λ is such that λ minus its first part is 2-singular,

and suppose |B| > r − 2. Then ker δ 6⊆ SkGRλ(V ).

Proof. Let d = |B|, and view B ∼= [d]. Pick any k > 1 such that

λk = λk+1 > 0. Set x = 1 +
∑k−2

a=1 λa, and let α be the weight in which x

has multiplicity λk−1 + λk + λk+1, and all other positive integers up to and

including r+1−(λk−1 +λk+λk+1) have multiplicity 1 (and all other integers

have multiplicity 0). Let t be the <c-greatest row-and-column semistandard

tableau with weight α; this indeed exists because the required inequality

|B| > r + 1 − (λk−1 + λk + λk+1) follows from the assumption |B| > r − 2.

Explicitly, t is defined by

t(i, j) =


j +

∑i−1
a=1 λa if 1 6 i 6 k − 2;

x if k − 1 6 i 6 k + 1;

j + x+
∑i−1

a=k+2 λa if k + 2 6 i 6 λ′1.

For example, if λ = (6, 6, 3, 3, 2, 1) and k = 3, then x = 7 and

t =

1 2 3 4 5 6

7 7 7 7 7 7

7 7 7

7 7 7

8 9

10

.

We aim to prove that ||t|| ∈ ker δ \ SkGRλ(V ). Clearly ||t|| ∈ ker δ. To

show that ||t|| is not an element of SkGRλ(V ), we require the following

property of t. Given a skew Garnir relation, we say the leading tableau of

the relation is the <c-greatest column semistandard tableau whose tabloid

has nonzero coefficient in the relation.

Claim 13.8.1. If u is the leading tableau of a supplementary skew snake

relation and is of weight α, then u <c t (where α and t are as defined above).

Proof. Consider a supplementary skew snake relation labelled by (s, i, j)

(so that in particular s is row-and-column semistandard). The leading tableau

of this skew snake relation is at most s by Lemma 13.5. If s is of weight α,
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then by maximality of t we have s <c t or s = t. Thus it remains only to

show that t is not the leading tableau of a supplementary skew snake relation

labelled by (t, i, j).

Consider the sets A and B defining the skew Garnir relation RSk
(t,i,j). Let

a be the multiplicity of t(i, j) in A and b the multiplicity of t(i, j) in B. Using

Lemma 13.5, the coefficient of ||t|| in RSk
(t,i,j) is

(
a+b
a

)
, so we are required to

show that
(
a+b
a

)
is even.

By construction of t, a supplementary skew snake relation labelled by

(t, i, j) has i ∈ {k − 1, k, k + 1}. We assess each possibility:

• if i = k − 1 and j 6 λk, then a = 3 and b = 1, and indeed
(

4
3

)
= 4 is

even;

• if i = k − 1 and j > λk, then a = b = 1, and indeed
(

2
1

)
= 2 is even;

• if i = k, then a = b = 2, and indeed
(

4
2

)
= 6 is even;

• if i = k + 1, then a = 1 and b = 3, and indeed
(

4
1

)
= 4 is even. �

Returning to the proof of the lemma, suppose towards a contradiction that

||t|| ∈ SkGRλ(V ). Then there exists some linear combination γ of (nonzero)

basic and supplementary skew snake relations of weight α such that γ = ||t||.
Consider the basic and supplementary skew snake relations with nonzero

coefficient in γ, and consider the set of their (column semistandard) leading

tableaux. Let u be <c-greatest in this set. We cannot have u <c t (or else

||t|| does not occur in any of the relations with nonzero coefficient in γ), and

so Claim 13.8.1 says that u is not the leading tableau of a supplementary

skew snake relation. Hence u is the leading tableau of a (unique) basic skew

snake relation, and furthermore labels that relation (since by Lemma 13.5

the leading tableau of a basic skew snake relation is its labelling tableau).

By maximality of u, the basic skew snake relation labelled by u is the

unique relation with nonzero coefficient in γ which has ||u|| as a summand.

Thus ||u|| has nonzero coefficient in γ, and hence ||u|| = ||t||. Since u and t

are both column semistandard, we have u = t. But t is row semistandard,

which contradicts that u labels a basic skew snake relation. �
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Lemma 13.9. Suppose λ1 = λ2 = λ3 + 1, and suppose that |B| > r − 2.

Then ker δ 6⊆ SkGRλ(V ).

Proof. We argue as in the proof of Lemma 13.8 with a different choice

of t. Let d = |B|, and view B ∼= [d]. Let α be the weight in which 1

has multiplicity λ1 + λ2 + λ3, and all other positive integers up to and

including r + 1− (λ1 + λ2 + λ3) have multiplicity 1 (and all other integers

have multiplicity 0). Let t be the <c-greatest row-and-column semistandard

tableau with weight α; indeed such tableaux exist as the required inequality

|B| > r+1−(λ1 +λ2 +λ3) follows from the assumption |B| > r−2. Explicitly,

t is defined by

t(i, j) =

1 if 1 6 i 6 3;

j + 1 +
∑i−1

a=3 λa if 4 6 i 6 λ′1.

For example, if λ = (5, 5, 4, 3, 1), then

t =

1 1 1 1 1

1 1 1 1 1

1 1 1 1

2 3 4

5

.

We deduce, using Lemma 13.5 as in the proof of Claim 13.8.1, that

t satisfies u <c t for any u of weight α which is the leading tableau of a

supplementary skew snake relation. Then arguing as in the final paragraphs

of Lemma 13.8, we conclude that ||t|| ∈ ker δ \ SkGRλ(V ). �

Combining Lemmas 13.7 to 13.9, we have the following characterisation

of when ker δ ⊆ SkGRλ(V ).

Proposition 13.10. There is containment ker δ ⊆ SkGRλ(V ) if λ is 2-

regular, or if λ1 = λ2 > λ3 + 2 and λ minus its first part is 2-regular.

Supposing |B| > r − 2, if λ is not of this form then ker δ 6⊆ SkGRλ(V ).

Remark 13.11. In Lemmas 13.8 and 13.9 and Proposition 13.10, the re-

striction on |B| is required to ensure that we can choose a tableau with

entries all distinct except for in three specified rows. The restriction on
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|B| can be weakened if we permit dependence on λ: in Lemma 13.8, it is

sufficient to require that |B| > r + 1 − (λk−1 + λk + λk+1) where k > 1 is

minimal such that λk = λk+1; in Lemma 13.9 it is sufficient to require that

|B| > r + 1− (λ1 + λ2 + λ3).
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14. The image of the Specht module in characteristic 2

The second main result of this chapter, restated below, is now clear by

combining Propositions 12.5 and 13.10.

Theorem G. Suppose K has characteristic 2 and let λ be a partition of

r. There is a surjection G⊗(Sλ) � ∇λE, which is an isomorphism if λ is

2-regular, or if λ1 = λ2 > λ3 + 2 and λ minus its first part is 2-regular.

Supposing also n > r − 2, if λ is not of this form then the surjection is not

an isomorphism.

In the remainder of this chapter, we establish a variety of other results

concerning G⊗(Sλ) in characteristic 2. Each of the following subsections is

logically independent.

In §14.1 we use our new knowledge of the module G⊗(Sλ) to deduce the

indecomposability of some Specht modules in characteristic 2. In §14.2 we

show that a lower bound on n that grows with r in Theorem G is necessary.

In §14.3 we restrict the possible composition factors of the kernel of the

surjection in Theorem G and bound its dimension growth. In §14.4 we identify

the composition factors of G⊗(Sλ) when r 6 5 and deduce that G⊗(Sλ) need

not have a filtration by dual Weyl modules. In §14.5 we describe G⊗(Sλ) for

some particular partitions and values of n.

14.1. Some indecomposable Specht modules

In characteristics other than 2, all Specht modules are known to be

indecomposable, and in characteristic 2 those indexed by 2-regular partitions

are known to be indecomposable [Jam78, Corollary 13.18]. Determining the

decomposability of the remaining Specht modules is a difficult open problem.

Families of decomposable Specht modules have been identified by Murphy

[Mur80], Dodge and Fayers [DF12], and Donkin and Geranios [DG20]. Here

we identify some new indecomposable Specht modules.

Corollary H. Suppose K is infinite and has characteristic 2. Let λ be a

partition such that λ1 = λ2 > λ3 + 2 and such that λ minus its first part is

2-regular. Then Sλ is indecomposable.
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Proof. Suppose, towards a contradiction, that Sλ is decomposable;

write Sλ = V1 ⊕ V2 for V1, V2 nonzero submodules. Choose some n > r.

The functor G⊗ preserves direct sums, so applying it to this decomposition

and using Theorem G we find that ∇λE ∼= G⊗(V1) ⊕ G⊗(V2). Note that

G⊗(V1) and G⊗(V2) are nonzero, since they are mapped by F to the nonzero

modules V1 and V2 respectively. This contradicts the indecomposability of

∇λE. �

14.2. Requirement on n

In Theorem G, the restriction n > r − 2 is required to ensure the

existence of a certain tableau, though the restriction can be weakened if

we permit dependence on λ (as noted in Remark 13.11). It is possible

for the isomorphism G⊗(Sλ) ∼= ∇λE to fail for n > r − 2 but hold for

some n < r − 2. Furthermore this may happen for arbitrarily large n, as

demonstrated by Example 14.1 below, so a lower bound on n that grows

with r is necessary. Bearing in mind that the composition factors of these

modules are independent of n (using Corollary 7.3), this behaviour is due to

G⊗(Sλ) having composition factors which ∇λE does not, but which vanish

for small n.

Example 14.1. Fix n ∈ N, and let r = 1 + (n+2)(n+3)
2 . Let λ = (n+ 2, n+

1, n, . . . , 2, 1, 1); that is, λ is the partition of r obtained from the 2-core

partition of length n+2 by adding a box to the first column. Clearly λ minus

its first part is not 2-regular, so by Theorem G we have that Gn′⊗ (Sλ) 6∼= ∇λE
when n′ > r − 2. However, we claim that Gn⊗(Sλ) ∼= ∇λE (which is 0 in this

case).

It suffices to show that ker δ ⊆ SkGRλ(E). Let t be a tableau with entries

in B such that ||t|| ∈ ker δ. Then t has a repeated entry in some column, and

moreover must have a repeated entry in the second column: there are n+ 1

boxes in the second column, so there are insufficiently many basis elements of

E for all of them to have distinct entries. Then the argument of Lemma 13.7

can be applied: we induct downward on the index of the rightmost column

in which t has a repeated entry; since this index is always at least 2, we do
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not require any constraint on the first column; all other columns satisfy the

condition of being at most 1 longer than the next, so the argument goes

through.

14.3. Restrictions on the kernel of the quotient map

We would like to know more of the structure of G⊗(Sλ) when G⊗(Sλ) 6∼=
∇λE. The missing information is a description of the kernel of the surjection

G⊗(Sλ)� ∇λE, which we denote Uλ (isomorphic to ker δ�ker δ|GR ).

In this subsection we record some restrictions on Uλ. We show, when K

is infinite and n > r, that Uλ does not have 2-restricted composition factors

and does not have a dual Weyl module as a subquotient. We also bound the

dimension growth of Uλ as n varies, finding that Uλ grows more slowly than

∇λE, so informally ∇λE comprises “most” of G⊗(Sλ).

Recall F is the Schur functor defined in §6.

Proposition 14.2. Suppose K is infinite and n > r.

(i) F(Uλ) = 0.

(ii) If Lµ(E) is a composition factor of Uλ, then µ is not 2-restricted.

(iii) ∇µE is not a subquotient of Uλ for any partition µ of r.

Proof. Applying the exact functor F to the third row of the diagram

in Proposition 12.5, we have a short exact sequence

0 F(Uλ) FG⊗(Sλ) F(∇λE) 0.

But FG⊗(Sλ) ∼= Sλ ∼= F(∇λE), so (i) follows. It is known that F(Lµ(E)) = 0

if and only if µ is not 2-restricted [EGS08, (6.4a),(6.4b)], so (ii) follows from

(i).

Every dual Weyl module in characteristic p has a composition factor

Lµ(E) with µ a p-restricted partition (this can be deduced by interpreting,

as in [Jam80], the decomposition matrix for Sr as a submatrix of the de-

composition matrix for GLn(K)). By (ii), such a composition factor cannot

occur in Uλ, so (iii) follows. �

We now bound the dimension of Uλ. We use big-O and big-Θ notation:

given functions f and g, the statement f(n) = O(g(n)) means that the
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function f grows asymptotically at most as quickly as g, whilst f(n) =

Θ(g(n)) means f grows asymptotically at the same rate as g.

Lemma 14.3. Fix r and allow n to vary. Let M be a K-vector space

with basis labelled by (a subset of) tableaux with entries in [n]. Let U be

a K-subspace of M . Let l > 1, and suppose all elements of U are linear

combinations of basis elements labelled by tableaux with at most r− l distinct

entries. Then dimU = O(dr−l).

Proof. Consider L 6 M the K-subspace linearly spanned by basis

elements labelled by tableaux with at most r− l distinct entries. There are at

most
((
n
r−l
))

=
(
n+r−l−1

r−l
)

= O(nr−l) possibilities for the multiset of entries of

such a tableau (where
((
a
b

))
denotes the number of multisubsets of size b in a

set of size a), and there are at most (r − l)r possibilities for the arrangement

of a given (r − l)-multiset of entries into a tableau. Thus dimL = O(nr−l).

By assumption, U is a subspace of L, and so dimU = O(nr−l). �

Proposition 14.4. Fix r and allow n to vary. Then dimUλ = O(nr−1).

Proof. Skew column tabloids in Uλ have a repeated entry in a column,

and so have at most r − 1 distinct entries; the proposition then follows from

Lemma 14.3. �

Remark 14.5. The dimensions of the dual Weyl modules are known (given

by the hook content formula [Sta01, Theorem 7.21.2]), and in particular

dim∇µE = Θ(nr) for all partitions µ of r. Thus Proposition 14.4 tells us

that Uλ grows more slowly than any dual Weyl module, and in particular

more slowly than ∇λE ∼= G⊗(Sλ)/Uλ. This fact also offers an alternative

proof of Proposition 14.2(iii) when n is sufficiently large but which holds also

for finite fields: for large n, Uλ is too small to have ∇µE as a subquotient.

14.4. Composition factors of the image of the Specht module

In this subsection, we identify the composition factors of G⊗(Sλ) when

r 6 5 and K is infinite. The composition factors of ∇λE are recorded in, for

example, [Jam80, Appendix], so we record only the composition factors of
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the kernel of the surjection G⊗(Sλ)� ∇λE, which we denote Uλ as in §14.3.

By Corollary 7.3, the composition factors are independent of n, though some

may vanish for small n.

We use a dimension counting argument to identify the composition factors.

We show the argument explicitly for the case λ = (2, 2, 1) below. The same

approach yields the composition factors of all partitions of r 6 5 which we

record following this example. The example of λ = (2, 2, 1) also demonstrates

that G⊗(Sλ) need not have a ∇-filtration (that is, a filtration by dual Weyl

modules), since the multiset of composition factors we identify does not

permit a ∇-filtration.

Example 14.6 (Composition factors of G⊗(Sλ) when λ = (2, 2, 1) do not

permit a ∇-filtration). Let r = 5 and λ = (2, 2, 1). Suppose n > r − 1. We

view B ∼= [n]. It can be shown directly that for any tableau t whose skew

column tabloid lies in ker δ, given any other tableau t′ of the same weight there

exist skew Garnir relations γ also lying in ker δ such that ||t||+γ = ||t′||. For

example, if t =
1 2
1 3
1

and t =
1 1
1 3
2

, we can choose γ = RSk
(t,1,1). Furthermore,

no skew column tabloid lies in SkGRλ(E), because all the skew snake relations

have an even number of summands (and so every linear combination of snake

relations is either zero or has at least two distinct column tabloids with

nonzero coefficients). Therefore, in Uλ there is exactly one distinct element

||t||+ ker δ|GR for each weight of tableau that permits at least one repeated

column entry, and these elements are linearly independent. The number

of such weights are enumerated in Table 14.1. This allows us to compute

dimUλ = 1
6n

4 + 5
6n

2.

The dimensions of the simple modules for r = 5 can be computed from

the dimensions of the dual Weyl modules (found using the hook content

formula [Sta01, Theorem 7.21.2]) and the decomposition matrix for GLn(K)

(see [Jam80, Appendix]). These dimensions are recorded in Table 14.2 below.

By Corollary 7.3, the partitions labelling the composition factors of Uλ are

independent of n for n > r. Thus dimUλ = 1
6n

4 + 5
6n

2 is a positive linear

combination of the dimensions in this table.
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dominant weight example tabloid number of weights

(2, 13)
1 2
1 3
4

4
(
n
4

)
(22, 1)

1 2
1 3
2

3
(
n
3

)
(3, 12)

1 2
1 3
1

3
(
n
3

)
(3, 2)

1 2
1 2
1

2
(
n
2

)
(4, 1)

1 1
1 2
1

2
(
n
2

)
(5)

1 1
1 1
1

n

Table 14.1. The number of weights of tableaux with entries in [n] which

have at least one repeated entry in a column.

λ dimLλ(E)

(15) 1
120n

5− 1
12n

4 + 7
24n

3− 5
12n

2 + 1
5n

(2, 13) 1
30n

5 − 1
6n

4 + 1
6n

3 + 1
6n

2 − 1
5n

(22, 1) 1
30n

5 − 1
3n

3 + 1
2n

2 − 1
5n

(3, 12) 1
6n

4 − 1
2n

3 + 1
3n

2

(3, 2) 1
2n

3 − 1
2n

2

(4, 1) 1
3n

4 − 1
3n

2

(5) n2

Table 14.2. The dimensions of the simple KGLn(K)-modules of polynomial

degree r = 5.

This allows us to deduce the composition factors of Uλ. Considering the

coefficient of n4, we first deduce that L(3,1,1)(E) must be a composition factor.

Subtracting these dimensions and considering the highest remaining powers
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of n in turn, we deduce that the composition factors of Uλ are L(3,1,1)(E),

L(3,2)(E) and L(5)(E).

These composition factors, together with those of ∇λE, can then be

compared with the possible composition series of dual Weyl modules (found

from the decomposition matrix for GLn(K)). Doing so reveals that the

composition factors of G⊗(Sλ) cannot be partitioned into sets of composition

factors for dual Weyl modules, and hence that G⊗(Sλ) has no ∇-filtration.

We now state the results for the remaining partitions of r 6 5.

For r 6 3, the only partitions for which G⊗(Sλ) 6∼= ∇λE are the columns

(12) and (13). If λ = (12), then Uλ ∼= L(2)(E); if λ = (13), then Uλ ∼=
L(3)(E). (In fact, in these cases the image G⊗(Sλ) is easily identified: see

Proposition 14.7.)

For r = 4, the partitions for which G⊗(Sλ) 6∼= ∇λE are (14) and (2, 12).

For r = 5, the partitions for which G⊗(Sλ) 6∼= ∇λE are (15), (2, 13), (22, 1) and

(3, 12). The composition factors of Uλ in these cases are given in Table 14.3.

(22) (3, 1) (4)

(14) 1 1 1

(2, 12) 2 1 1

(a) r = 4

(3, 12) (3, 2) (4, 1) (5)

(15) 1 1 1

(2, 13) 1

(22, 1) 1 1 1

(3, 12) 1 2 1

(b) r = 5

Table 14.3. The composition factors of Uλ for partitions of r = 4, 5. The

composition factors of Uλ are given by the row labelled λ; the multiplicities

of the simple module Lµ(E) by the column labelled µ.

14.5. Descriptions in particular cases

In this subsection, we describe the module G⊗(Sλ) for some particular

tractable examples. In particular, we:

• fully describe G⊗(Sλ) when λ is a column, row, or two-row partition

(Proposition 14.7);
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• fully describe G⊗(Sλ) when n = 1 (Proposition 14.10);

• compute the dimension of G⊗(Sλ) when n = 2 and λ is a hook partition,

and furthermore for hook partitions of even length identify G⊗(Sλ) as

a tensor product of known representations (Proposition 14.12).

Proposition 14.7 (Columns, rows and two-row partitions).

(i) Suppose λ = (1r) is a single column. Then G⊗(Sλ) ∼= SkrE.

(ii) Suppose λ = (r) is a single row. Then G⊗(Sλ) ∼= Symr E.

(iii) Suppose λ = (r −m,m) is a two-row partition and λ 6= (1, 1). Then

G⊗(Sλ) ∼= ∇(r−m,m)E.

Proof. When λ is a column, we observe that SkGRλ(E) = 0 and so

G⊗(Sλ) ∼= Skλ
′
E. When λ consists of at most two rows (and λ 6= (1, 1)), the

claim follows from Theorems F and G (or, in the case of a single row, can be

seen clearly from the fact that the skew Garnir relations become relations

exchanging the entries along the row). �

It is interesting that even the case of n = 1 is nontrivial. When n = 1,

the dual Weyl module is easy to describe: ∇λE = 0 unless λ is a single row,

in which case ∇λE ∼= Symr E ∼= E⊗r of dimension 1. For G⊗(Sλ), again 0

and E⊗r are the only two possibilities, but both can occur for partitions of

arbitrary length, and the dichotomy of partitions is not straightforward to

describe.

To distinguish between the two possibilities, we require the following

characterisation of the parity of binomial coefficients. This is the case p = 2

of Definition 11.10 and Lucas’s Theorem, for which the results can be stated

particularly concisely.

Definition 14.8. We say the binary addition of integers a and b is carry-free

if, for all i, the ith binary digits of a and b are not both 1.

Lemma 14.9. Let a, b, c ∈ N.

(i) The binomial coefficient
(
a+b
a

)
is odd if and only if the binary addition

of a and b is carry-free.
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(ii) There exists 1 6 i 6 c− 1 such that
(
c
i

)
is odd if and only if c is not a

power of 2. When this is the case, the minimal i > 1 such that
(
c
i

)
is

odd is the maximal power of 2 that divides c.

Proof. Part (i) is a consequence of Lucas’s Theorem, as given (for

example) in [Jam78, Lemma 22.4]. Part (ii) follows from part (i) by writing

c in binary. �

Proposition 14.10. Suppose n = 1 and charK = 2. Then G⊗(Sλ) = 0 if

and only if there exists 1 6 j < λ1 such that:

• λ′j + 1 is not a power of 2; and

• λ′j+1 > 2m, where m > 0 is maximal such that 2m divides λ′j + 1.

When G⊗(Sλ) 6= 0, we have G⊗(Sλ) ∼= E⊗r.

Proof. Since n = 1, the set B is a singleton and there is a unique tableau

t with entries in B (having all entries the same). We therefore have that

G⊗(Sλ) = 0 if and only if ||t|| ∈ SkGRλ(E), and G⊗(Sλ) ∼= E⊗r otherwise.

Place permutations leave t unchanged, so the skew Garnir relation labelled

by sets A and B is the sum of |SAtB : SA × SB| copies of ||t||. That is,

RSk
(t,A,B) =

(|A|+ |B|)!
|A|!|B|! ||t||.

Focusing on skew snake relations, this becomes

RSk
(t,i,j) =

(
λ′j + 1

i

)
||t||.

Thus ||t|| ∈ SkGRλ(E) if and only if there exists j such that
(λ′j+1

i

)
is odd

for some 1 6 i 6 λ′j+1. The proposition now follows from Lemma 14.9(ii).

�

This proof of Proposition 14.10 generalises the argument for hook parti-

tions given in Example 13.6. The following corollary of the proposition can

in fact be deduced from that example alone.
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Corollary 14.11 (Hooks when n = 1). Let a, l > 2 with r = a + l − 1.

Suppose n = 1, charK = 2, and λ = (a, 1l−1) is a hook partition. Then

G⊗(Sλ) ∼=

0 if l is even,

E⊗r if l is odd.

Our final example concerns hooks when n = 2. Our description includes

a Frobenius twist. Recall that if K is a field of characteristic p, then the

map x 7→ xp is a field endomorphism called the Frobenius endomorphism.

This yields a group endomorphism of GLn(K) defined by acting entrywise.

Composing this map with the representing group homomorphism of a repre-

sentation V over K yields a new representation, called the Frobenius twist

of V , which we denote Fr(V ). Given an element v ∈ V , we denote the

corresponding element of Fr(V ) by Fr(v).

Proposition 14.12 (Hooks when n = 2). Let a, l > 2 with r = a + l − 1.

Suppose n = 2, charK = 2, and λ = (a, 1l−1).

(i) Suppose l is even. Then

G⊗(Sλ) ∼= Fr(Sym
l
2
−1E)⊗ Syma−1E ⊗ detE,

of dimension 1
2al.

(ii) Suppose l is odd. Then dimG⊗(Sλ) = 1
2(a+ 1)(l + 1).

Proof. Write B = {X,Y }, with X < Y , for the basis of E. Given a

tableau t, write eSk(t) for the image of ||t|| in G⊗(Sλ).

We consider the spanning set for the skew Garnir relations identified in

Proposition 13.3, with the function Φ defined on column semistandard but

not row semistandard tableaux by choosing the right-most box eligible box

in the first row (noting there is no other row with more than one box).

A skew Garnir relation involving only columns other than the first tells

us precisely that in G⊗(Sλ) the entries, except the first, of the first row can

be permuted freely.

The remaining elements of our spanning set we must consider are labelled

by (t, 1, 1) for some t, where either: t is row-and-column semistandard and
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t(1, 1) = t(1, 2); or the first column of t has all entries Y , t(1, 2) = X, and

the remainder of the first row is weakly increasing.

For 0 6 b 6 l and 0 6 m 6 a− 1, let tb,m be the (column semistandard)

tableau of shape λ where X appears b times in the first column and m times

in the remaining columns, with the Xs in the first column at the top, and

the Xs in the first row at the left (except possibly the first column). The

tableaux identified in the previous paragraph, labelling the snake relations

we are still to consider, are all of the form tb,m for some 0 6 b 6 l and

0 6 m 6 a − 1. Additionally, if tb,m is one of the identified tableaux and

m = 0, then also b = 0. In these cases, we have:

RSk
(tb,m,1,1) =

(b+ 1)||tb,m||+ (l − b)||tb+1,m−1|| if m > 0,

(l + 1)||t0,0|| if b = m = 0.
(14.12.1)

[(i)] Suppose l is even. Then each relation (14.12.1) above has an odd

total number of summands, and thus is equal to a single tabloid. If ||tb,m||
appears as a relation, which is precisely if b is even, then its image in G⊗(Sλ)

is zero; if it does not, which is precisely if b is odd, then its image in G⊗(Sλ)

is nonzero and is linearly independent of the images of all other tabloids of

that form. Thus

{ eSk(tb,m) | 0 6 b 6 l, b odd, 0 6 m 6 a− 1 }

is a basis for G⊗(Sλ). The dimension follows.

Let ϕ : G⊗(Sλ)→ Fr(Sym
l
2
−1E)⊗Syma−1E⊗detE be the map defined

by K-linear extension of

ϕ(eSk(tb,m)) = Fr(X
b−1
2 Y

l−b−1
2 )⊗XmY a−1−m ⊗ 1

for 0 6 b 6 l, b odd, 0 6 m 6 a − 1. Since ϕ is a bijection between bases,

it is a linear isomorphism. It is easy to verify that ϕ respects the action of

diagonal elements of GL2(K): the element
(
α 0
0 β

)
∈ GL2(K) acts on both

eSk(tb,m) and its image by multiplication by αb+mβr−b−m. By Lemma 5.9, it

then suffices to show ϕ respects the action of elementary transvections.

Let 0 6 b 6 l, b odd, 0 6 m 6 a− 1. Let g = ( 1 0
α 1 ) ∈ GL2(K) for some

α ∈ K; that is, g is the elementary transvection fixing Y and acting on X as
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gX = X + αY . Then

gXmY a−1−m =
m∑
j=0

(
m

j

)
αjXm−jY a−1−m+j

and

gFr(X
b−1
2 Y

l−b−1
2 ) = Fr(

(
1 0
α2 1

)
X

b−1
2 Y

l−b−1
2 )

=

b−1
2∑

k=0

( b−1
2

k

)
α2kFr(X

b−1
2
−kY

l−b−1
2

+k).

Also det g = 1, so

gϕ(eSk(tb,m)) =

b−1
2∑

k=0

m∑
j=0

( b−1
2

k

)(
m

j

)
α2k+jϕ(eSk(tb−2k,m−j)).

Meanwhile,

g eSk(tb,m) =

b∑
i=0

m∑
j=0

(
b

i

)(
m

j

)
αi+j eSk(tb−i,m−j)

=

b−1
2∑

k=0

m∑
j=0

(
b

2k

)(
m

j

)
α2k+j eSk(tb−2k,m−j)

where the second equality holds because eSk(tb−i,m−j) = 0 when i is odd,

so we can relabel via i = 2k. Equivariance is then clear provided that( b−1
2
k

)
≡
(
b

2k

)
(mod 2). Indeed this follows from the Lemma 14.9(i) by noting

that the binary addition of c and d is carry-free if and only if the binary

addition of 2c and 2d+ 1 is carry-free. Showing that ϕ respects the action

of ( 1 α
0 1 ) is analogous, and completes the proof.

[(ii)] Suppose l is odd. Then each relation (14.12.1) above has an even

total number of summands, and thus is either zero or the sum of two distinct

tableaux. The b = m = 0 relation is clearly zero. When m > 0, the relation is

nonzero if and only if b is even. We thus have that eSk(tb,m) = eSk(tb+1,m−1)

for b even and m > 0, and furthermore that

{ eSk(tb,m) | 0 6 b 6 l, b even, 0 6 m 6 a− 1 }
t { eSk(tb,a−1) | 0 6 b 6 l, b odd }

is a basis for G⊗(Sλ). The dimension follows. �



CHAPTER V

Tensor products of representations of SL2(Fp)

This chapter studies tensor products of representations of the finite

group SL2(Fp) over an algebraically closed field K of characteristic p. We

decompose tensor products into indecomposable modules, and investigate a

random walk on the simple representations defined via the tensor product.

This draws from the author’s [McD22].

The relevant modules are introduced in §15.

In §16 we identify decompositions of tensor products of simple modules,

of tensor products of projective indecomposable modules, and of symmetric

and exterior squares.

In §17 we investigate Markov chains defined by tensoring by a fixed

simple module and choosing a non-projective indecomposable summand

of the result. We show our chains are reversible and find their connected

components and their stationary distributions, and draw connections between

these properties of the chain and the representation theory of SL2(Fp),
emphasising symmetries of the tensor product.

In this chapter, our representations are over an algebraically closed field

K with prime subfield Fp, and our group is G = SL2(Fp), except possibly

in §15 and §16.1 when we sometimes permit G to be another subgroup of

GL2(K). We define the following notation for a family of sets that will index

the summands of tensor products.

Definition 15.0. For n > m > 1, let the (n,m)-string be the set

〈n,m〉 = {n+m− 1, n+m− 3, . . . , n−m+ 3, n−m+ 1},

and let 〈n, 0〉 = ∅.

165
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15. Representations of SL2(Fp)

In this section we define the modules whose tensor products we will

study in subsequent sections, and provide some additional background on

the representation theory of SL2(Fp).

15.1. Simple modules

Write Vm = Symm−1E for m > 1, where E is the natural KSL2(Fp)-
module (or with some other matrix subgroup G 6 GL2(K) in place of

SL2(Fp)). Since dimE = 2, the parameter shift means that we are labelling

each module Vm by its dimension m.

By writing X and Y for the standard basis vectors of E, we can model

Vm as the space of homogeneous polynomials over K of degree m− 1 in two

variables X and Y , with G-action given by(
a b
c d

)
f(X,Y ) = f(aX + cY, bX + dY ).

When G > SL2(Fp), the modules V1, . . . , Vp are simple [Alp86, pp. 14–16].

Since the number of p-regular conjugacy classes of SL2(Fp) is precisely p, we

deduce that when G = SL2(Fp) the set {Vm | 1 6 m 6 p } is a complete set

of simple KG-modules.

In particular, we deduce that there is a unique simple KG-module of each

dimension less than or equal to p. Thus the simple modules are self-dual.

15.2. Projective indecomposable modules

When G is finite, let Pm be the projective cover of Vm. Then when

G = SL2(Fp), the set {Pm | 1 6 m 6 p } is a complete set of projective

indecomposable KG-modules.

The projective indecomposable KSL2(Fp)-modules are constructed in

[Alp86, pp. 48–52] (using the special case m = 2 of our Proposition 16.2).

We give their descriptions here.

The module Pp ∼= Vp is projective and simple.

When p = 2, there is only one other projective indecomposable module:

P1, which is of composition length 2 (and hence has composition factors

only V1). For p > 2, all other projective indecomposable modules have
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P1

0

V1

Vp−2

V1

P2

0

V2

Vp−3 Vp−1

V2

· · ·

Pp−2

0

Vp−2

V1 V3

Vp−2

Pp−1

0

Vp−1

V2

Vp−1

Figure 15.1. The structures of the projective indecomposable representa-

tions of SL2(Fp) in defining characteristic, when p > 2.

composition length 3, and so the only structural information which is missing

is their heart. The heart of P1 is Vp−2, the heart of Pp−1 is V2, and for

2 6 n 6 p − 2 the heart of Pn is Vp−n−1 ⊕ Vp−n+1; these structures are

illustrated in Figure 15.1.

Note that P1 and Pp are both p-dimensional, while all other projective

indecomposable KG-modules are 2p-dimensional.

15.3. Block structure of SL2(Fp)

From the structure of the projective indecomposable modules, we can

describe the blocks of SL2(Fp) and write down their Brauer trees and the

Cartan matrix. These descriptions are given for interest and completeness;

they are not required in subsequent sections. For definitions of Brauer trees

and Cartan matrices, see [Alp86, Section 17] and [CR62, p. 593] respectively.

The module Vp ∼= Pp is projective, and hence lies in its own block of

defect 0.

For p = 2, there is only one other block: the principal block, having

Brauer tree a single edge with multiplicity 1. For p > 2, there are two other

blocks: the principal block containing the simple modules of odd dimension,

and a block containing the simple modules of even dimension. It can be seen

directly from the structure of the projective indecomposable modules that
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2V1 Vp−2 V3
V p+ε

2

2Vp−1 V2 Vp−3
V p−ε

2

Figure 15.2. Brauer trees for the blocks of SL2(Fp) of nonzero defect, when

p > 2. Here ε ∈ {±1} and ε ≡ p (mod 4).

each of these blocks is a Brauer tree algebra, with the trees illustrated in

Figure 15.2. These trees are described in [Alp86, p. 123].

Since they contain non-projective simple modules, these blocks have

nontrivial defect, and then since the unique nontrivial p-subgroup of G

is cyclic of order p, this is the defect group of each block (alternatively,

given these Brauer trees, the defect groups must be cyclic of order p by the

classification of blocks of cyclic defect).

To write down the Cartan matrix, it is most convenient to give the simple

modules and their covers the ordering

V1, Vp−2, V3, . . . , V p+ε
2
, Vp−1, V2, Vp−3, . . . , V p−ε

2
, Vp

where ε ∈ {±1} and ε ≡ p (mod 4). For p = 2, the Cartan matrix is simply

( 2 0
0 1 ). For p > 2, let C be the p−1

2 ×
p−1

2 matrix

2 1

1 2 1
. . .

. . .
. . .

1 2 1

1 3


and let C =

(
3
)

when p = 3. Then, in block diagonal form,
C

C

1


is the Cartan matrix.
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16. Decompositions of tensor products

In this section we prove the Clebsch–Gordan rule, which describes the

decomposition of tensor products of simple modules. We then use it to

decompose tensor products of projective indecomposable modules and to

decompose symmetric and exterior squares.

16.1. Maps between tensor products

Our proof of the Clebsch–Gordan rule requires two families of maps

between tensor products.

Multiplication map. The first map we require is the multiplication map.

Identifying its kernel leads to a filtration of tensor products of the symmetric

powers.

Definition 16.1. Let µ : Vn ⊗ Vm → Vn+m−1 be the multiplication map,

defined by K-linear extension of µ(f ⊗ g) = fg. The dependence of µ on n

and m is suppressed, since it is always clear from context.

It is easily seen that µ is surjective and GL2(K)-equivariant. The follow-

ing result identifying the kernel of µ is well-known (see [Glo78, (5.1)], or for

the case m = 2 [Alp86, Lemma 5, p. 50–51] or [Kou90a, Proposition 1.2(a)]).

Proposition 16.2. Suppose G 6 SL2(K) and suppose n,m > 2. Then the

kernel of µ is isomorphic to Vn−1 ⊗ Vm−1, and hence there is a short exact

sequence

0 Vn−1 ⊗ Vm−1 Vn ⊗ Vm Vn+m−1 0.
µ

Proof. Consider the map θ : Vn−1 ⊗ Vm−1 → Vn ⊗ Vm defined by K-

linear extension of θ(f ⊗ g) = Xf ⊗ Y g − Y f ⊗ Xg. Observe that θ is
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SL2(K)-equivariant: for t =
(
a b
c d

)
∈ SL2(K), we have

tθ(f ⊗ g) = t(Xf ⊗ Y g − Y f ⊗Xg)

= (aX + cY )tf ⊗ (bX + dY )tg − (bX + dY )tf ⊗ (aX + cY )tg

= (ad− bc)Xtf ⊗ Y tg − (ad− bc)Y tf ⊗Xtg

= det(t)(Xsf ⊗ Y tg − Y tf ⊗Xtg)

= Xtf ⊗ Y tg − Y tf ⊗Xtg

= θ(t(f ⊗ g)).

It is easy to see that im θ 6 kerµ. Because µ is surjective, we have that

dim(kerµ) = dim(Vn ⊗ Vm)− dim(Vn+m−1) = dim(Vn−1 ⊗ Vm−1), and so it

remains only to show that θ is injective.

Let

ei,j = XiY n−2−i ⊗XjY m−2−j ∈ Vn−1 ⊗ Vm−1,

so that { ei,j | 0 6 i 6 n−2, 0 6 j 6 m−2 } is a linear basis for Vn−1⊗Vm−1.

For 0 6 r 6 n+m− 4, let

Ur = 〈 ei,j | i+ j = r 〉K ⊆K Vn−1 ⊗ Vm−1,

and note that as vector spaces Vn−1 ⊗ Vm−1 =
⊕n+m−4

r=0 Ur.

Similarly, let

fi,j = XiY n−1−i ⊗XjY m−1−j ∈ Vn ⊗ Vm,

so that { fi,j | 0 6 i 6 n− 1, 0 6 j 6 m− 1 } is a linear basis for Vn ⊗ Vm.

For 0 6 r 6 n+m− 2, let

Wr = 〈 fi,j | i+ j = r 〉K ⊆K Vn ⊗ Vm,

and note that as vector spaces Vn ⊗ Vm =
⊕n+m−2

r=0 Wr.

Observe that θ(ei,j) = fi+1,j − fi,j+1. Then θ(Ur) ⊆K Wr+1, and thus it

suffices to show that θ|Ur is injective for each 0 6 r 6 n+m− 4. Fix r in

this range, and let i0 = max{0, r − (m− 2)} and j0 = max{0, r − (n− 2)}
so that Ur = 〈 ei,r−i | i0 6 i 6 r − j0 〉K . Then the images under θ of these
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basis vectors for Ur are as follows.

θ(ei0,r−i0) = fi0+1,r+1−(i0+1) − fi0,r+1−i0

θ(ei0+1,r−(i0+1)) = fi0+2,r+1−(i0+2) − fi0+1,r+1−(i0+1)

θ(ei0+2,r−(i0+2)) = fi0+3,r+1−(i0+3) − fi0+2,r+1−(i0+2)

...

θ(er−(j0+1),j0+1) = fr+1−(j0+1),j0+1 − fr+1−(j0+2),j0+2

θ(er−j0,j0) = fr+1−j0,j0 − fr+1−(j0+1),j0+1

Thus the (r − i0 − j0 + 1)× (r − i0 − j0) matrix representing θ with respect

to these bases is 
1

−1 1

−1
. . .
. . . 1

−1

 ,

which is of full (column) rank. Thus θ|Ur is injective as required. �

Remark 16.3. Unlike µ, the map θ used in the proof of Proposition 16.2 is

not GL2(K)-equivariant. Since tθ(f ⊗ g) = det(t)θ(t(f ⊗ g)) for t ∈ GL2(K),

we see that θ is not G-equivariant for any subgroup G which contains a

matrix with determinant not equal to 1. For an extension of this proposition

to such subgroups, see [Glo78, (5.1)].

Corollary 16.4. Suppose G 6 SL2(K) and suppose 1 6 m 6 n. Then

Vn ⊗ Vm has a filtration

0 = Mm ⊆Mm−1 ⊆ · · · ⊆M1 ⊆M0 = Vn ⊗ Vm

where Mi
∼= Vn−i ⊗ Vm−i and Mi�Mi+1

∼= Vn+m−1−2i.

Proof. By induction on m. The case m = 1 is immediate. For m > 2,

the short exact sequence involving µ gives that there is M1 ⊆ Vn ⊗ Vm such

that

M1
∼= Vn−1 ⊗ Vm−1
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and

Vn ⊗ Vm�M1
∼= Vn+m−1.

Applying the inductive hypothesis to M1 gives the rest of the filtration.

�

Remark 16.5. The proof of Proposition 16.2 holds equally well if K is of

characteristic 0. In this case the simple modules are also projective and

so the short exact sequences split, and we obtain Vn ⊗ Vm ∼=
⊕

i∈〈n,m〉 Vi

(recovering the well-known Clebsch–Gordan rule for SU2(C)). The same

decomposition is obtained when G 6 SL2(K) is finite with p - |G|.

Separation map. The second family of maps we require was introduced by

the author in [McD22], generalising the map δ defined in [Glo78, (5.2)]

(corresponding to n = 1 below). These maps allow us to see the inclusion of

the bottom layer of the above filtration into Vn ⊗ Vm, and they split in more

cases than µ does.

Definition 16.6. For n > 1 and m > 2, let λ : Vn ⊗ Vm → Vn+1 ⊗ Vm−1 be

the map defined by K-linear extension of

λ(f ⊗ g) = Xf ⊗ ∂g

∂X
+ Y f ⊗ ∂g

∂Y
.

The dependence of λ on n and m is suppressed, since it is always clear from

context.

Lemma 16.7. The map λ is GL2(K)-equivariant.

Proof. Let t =
(
a b
c d

)
∈ GL2(K), and let f ∈ Vn and g ∈ Vm. Then

tλ(f ⊗ g) = t

(
Xf ⊗ ∂g

∂X
+ Y f ⊗ ∂g

∂Y

)
= (aX + cY )tf ⊗ t ∂g

∂X
+ (bX + dY )tf ⊗ t ∂g

∂Y

= Xtf ⊗
(
at
∂g

∂X
+ bt

∂g

∂Y

)
+ Y tf ⊗

(
ct
∂g

∂X
+ dt

∂g

∂Y

)
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and

λ(t(f ⊗ g)) = Xtf ⊗ ∂(tg)

∂X
+ Y tf ⊗ ∂(tg)

∂Y
.

So it suffices to show that ∂(tg)
∂X = at ∂g∂X + bt ∂g∂Y and that ∂(tg)

∂Y = ct ∂g∂X +dt ∂g∂Y .

Without loss of generality, suppose g is a monomial; write g = XiY j

(where i+ j = m− 1). Then tg = (aX + cY )i(bX + dY )j , and

∂(tg)

∂X
=
∂(aX + cY )i

∂X
(bX + dY )j + (aX + cY )i

∂(bX + dY )j

∂X

= ia(aX + cY )i−1(bX + dY )j + jb(aX + cY )i(bX + dY )j−1

= at
∂g

∂X
+ bt

∂g

∂Y

and similarly ∂(tg)
∂Y = ct ∂g∂X + dt ∂g∂Y . �

Lemma 16.8. Suppose n > m and 2 6 m 6 p. Then the map λ is surjective.

Proof. Let f = XiY i′ ∈ Vn+1, g = XjY j′ ∈ Vm−1 be monomials. We

have i+ i′ + j + j′ = n+m− 2 > 2(m− 1), and hence either i+ j > m− 1

or i′ + j′ > m − 1. We show that f ⊗ g ∈ imλ by downward induction

on j whenever i + j > m − 1; then by analogy the same holds whenever

i′ + j′ > m− 1.

Note first that if i+ j > m− 1, then i > 1 (since 0 6 j 6 m− 2) and so

1
X f is a polynomial (in Vn).

If j = m − 2, then g = Xm−2 so ∂(Xg)
∂X = (m − 1)Xm−2 and ∂g

∂Y = 0.

Then

λ
(

1
X f ⊗Xg

)
= (m− 1)f ⊗ g

and m− 1 is invertible (since 2 6 m 6 p), so f ⊗ g ∈ imλ.

Now suppose 0 6 j < m− 2. Then

λ
(

1
X f ⊗Xg

)
= (j + 1)f ⊗ g +

Y

X
f ⊗X ∂g

∂Y
.

But by the inductive hypothesis Y
X f ⊗X

∂g
∂Y ∈ imλ (since X ∂g

∂Y has a higher

power of X than g, and the sum of the powers of X in Y
X f and X ∂g

∂Y is

i+ j > m− 1). Then since j + 1 is invertible, we have f ⊗ g ∈ imλ. �
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Proposition 16.9. Suppose G 6 SL2(K) and suppose n > m and 2 6 m 6

p. Then the kernel of λ is isomorphic to Vn−m+1, and hence there is a short

exact sequence

0 Vn−m+1 Vn ⊗ Vm Vn+1 ⊗ Vm−1 0.λ

Proof. Define variations on the multiplication map by

µ(r) : Vn1 ⊗ Vm1⊗ · · · ⊗ Vnr ⊗ Vmr → VN−(r−1) ⊗ VM−(r−1)

f1 ⊗ g1⊗ · · · ⊗ fr ⊗ gr 7→ f1 · · · fr ⊗ g1 · · · gr

extended K-linearly, where N =
∑r

i=1 ni and M =
∑r

i=1mi. Let gm ∈
Vm ⊗ Vm be the element

gm = µ(m−1) ((X ⊗ Y − Y ⊗X)⊗ · · · ⊗ (X ⊗ Y − Y ⊗X))

=
m−1∑
i=0

(−1)m−1−i
(
m− 1

i

)
XiY m−1−i ⊗Xm−1−iY i.

By the first expression, it is clear that tgm = (det t)m−1gm for any t ∈
GL2(K).

Now define a K-linear map η : Vn−m+1 → Vn ⊗ Vm by

η(f) = µ(2)(f ⊗ 1⊗ gm)

=

m−1∑
i=0

(−1)m−1−i
(
m− 1

i

)
fXiY m−1−i ⊗Xm−1−iY i.

Then for any t ∈ GL2(K), we have tη(f) = (det t)m−1η(tf), and so η is

G-equivariant. Clearly the expression above is zero if and only if f = 0, so η

is injective. Furthermore,

λη(f) =
m−2∑
i=0

(−1)m−1−i
(
m− 1

i

)
(m− 1− i)fXi+1Y m−1−i ⊗Xm−2−iY i

+
m−1∑
i=1

(−1)m−1−i
(
m− 1

i

)
ifXiY m−i ⊗Xm−1−iY i−1

= 0,
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where the final equality can be seen by replacing i with i − 1 in the first

sum, and noting that
(
m−1
i

)
i = (m − 1)

(
m−2
i−1

)
=
(
m−1
i−1

)
(m − i). Thus

Vn−m+1
∼= im η 6 kerλ.

Since n > m and 2 6 m 6 p, by Lemma 16.8 we have that λ is surjective,

and then by counting dimensions we have Vn−m+1
∼= kerλ. �

Remark 16.10. Using Corollary 16.4 and comparing the filtrations of

Vn ⊗ Vm and Vn+1 ⊗ Vm−1, we see immediately that kerλ and Vn−m+1 have

the same multiset of composition factors (provided λ is surjective). In the

case n−m+ 1 6 p and G > SL2(Fp), we have that Vn−m+1 is simple, and

we could then deduce this proposition immediately without considering η.

Power map. When decomposing tensor products involving projective mod-

ules, we require also the following isomorphism. We will only require the

case n = 2, q = p and G = SL2(Fp), but we prove it more generally as it is

no more difficult. This isomorphism, for representations of the semigroup of

2× 2 matrices over Fp, is established in [Glo78, (5.3)].

Lemma 16.11. Suppose Fq 6 K is a finite subfield of order q (where q is a

power of p) and G 6 GL2(Fq). Then there is an isomorphism Vn⊗Vq ∼= Vnq.

Proof. Let ψ : Vn → Vnq−q+1 be the map defined by ψ(f(X,Y )) =

f(Xq, Y q). It is K-linear (indeed, it is the K-linear extension of XiY j 7→
XqiY qj). Then let ϕ : Vn ⊗ Vq → Vnq be the map defined by K-linear

extension of

ϕ(f ⊗ g) = ψ(f)g.

We immediately see that ϕ is surjective: given XrY nq−1−r ∈ Vnq, write

r = iq + j with 0 6 j 6 q − 1, and then ϕ(XiY n−1−i ⊗ XjY q−1−j) =

XrY nq−1−r. Then ϕ is also injective, since dim(Vn ⊗ Vq) = nq = dim(Vnq).

To obtain an isomorphism Vn ⊗ Vq ∼= Vnq, it remains only to show that ϕ is

G-equivariant. For this it suffices to show that ψ is G-equivariant.
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Let t =
(
a b
c d

)
∈ G. Recall that xq = x for any x ∈ Fq, and that

(y + z)q = yq + zq for any y, z in any ring of characteristic p. Then

tψ(f(X,Y )) = tf(Xq, Y q)

= f((aX + cY )q, (bX + dY )q)

= f(aXq + cY q, bXq + dY q)

= ψ(f(aX + cY, bX + dY ))

= ψ(tf(X,Y ))

as required. �

16.2. Clebsch–Gordan rule

We now obtain the decomposition of tensor products of simple modules.

Here and for the remainder of this chapter we take G = SL2(Fp).

Theorem 16.12 (Clebsch–Gordan rule for SL2(Fp) in characteristic p).

Suppose G = SL2(Fp) and 1 6 m 6 n 6 p. Then

Vn ⊗ Vm ∼=
⊕

i∈〈n,m〉∩[p]
2p−i/∈〈n,m〉

Vi ⊕
⊕

i∈〈n,m〉∩[p]
2p−i∈〈n,m〉

Pi ⊕ 1[n = m = p]Vp.

Remark 16.13. We make several immediate observations about the tensor

product of simple modules Vn and Vm (where 1 6 m 6 n 6 p):

(i) all non-projective indecomposable summands of Vn ⊗ Vm are simple;

(ii) Vn ⊗ Vm is semisimple if and only if n + m 6 p + 1, in which case

Vn⊗Vm ∼=
⊕

i∈〈n,m〉 Vi, which is exactly the rule for analogously defined

representations of SU2(C) over C;

(iii) Vn ⊗ Vm is projective if and only if n = p, in which case Vp ⊗ Vm ∼=⊕
i∈〈p,m〉∩[p] Pi ⊕ 1[m = p]Vp;

(iv) in the sense of indecomposable summands, Vn⊗Vm is multiplicity-free

unless n = m = p (when Vp occurs with multiplicity 2, and all other

indecomposable summands occur only once).

Proof. Our strategy is to establish two implications. Implication (i) is

that if the theorem holds for (n+ 1,m− 1), then it holds for (n,m) (where
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2 6 m 6 n 6 p−1), which we prove by showing that the short exact sequence

involving λ splits in this case. Implication (ii) is that if the theorem holds

for (p − 1,m − 1), then it holds for (p,m) (where 2 6 m 6 p), which we

prove using the short exact sequence involving µ. With these implications, it

suffices to show the theorem holds for (n, 1) for 1 6 n 6 p (as illustrated in

the case p = 7 in Figure 16.1). But these cases are trivial, since Vn⊗V1
∼= Vn

(and Pp ∼= Vp), so the theorem follows.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

m

n

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒
=⇒

=⇒ =⇒
=⇒
=⇒

=⇒
=⇒

=⇒
=⇒

=⇒
=⇒

=⇒
=⇒
=⇒ =⇒

Figure 16.1. An illustration of how the implications we prove suffice to

prove the entire theorem, in the case p = 7. The dot in position (n,m)

represents the theorem holding for that pair of values, the hollow dots being

the trivial cases with m = 1; the arrows represent the implications we prove

here.

Implication (i)

Suppose the theorem holds for (n+ 1,m− 1) (where 2 6 m 6 n 6 p− 1);

that is,

Vn+1 ⊗ Vm−1
∼=

⊕
i∈〈n+1,m−1〉∩[p]
2p−i/∈〈n+1,m−1〉

Vi ⊕
⊕

i∈〈n+1,m−1〉∩[p]
2p−i∈〈n+1,m−1〉

Pi.

Observe that the proposed decomposition of Vn ⊗ Vm differs from that of

Vn+1 ⊗ Vm−1 only by an additional summand of Vn−m+1. Thus to show the
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theorem holds for (n,m), it suffices to show that the short exact sequence

0 Vn−m+1 Vn ⊗ Vm Vn+1 ⊗ Vm−1 0λ

from Proposition 16.9 splits.

Let Q ∼=
⊕

i∈〈n+1,m−1〉∩[p]
2p−i∈〈n+1,m−1〉

Pi be the projective part of Vn+1⊗Vm−1. Then

the projection of λ onto Q splits, and so there is a module W such that

Vn ⊗ Vm ∼= W ⊕Q

and such that there is a short exact sequence

0 Vn−m+1 W
⊕

i∈〈n+1,m−1〉∩[p]
2p−i/∈〈n+1,m−1〉

Vi 0.

It now suffices to show that this sequence splits. Indeed, suppose, towards

a contradiction, the sequence does not split. Then W , and hence Vn ⊗ Vm,

has as an indecomposable summand some non-split extension T of Vn−m+1

by a module with composition factors a nonempty subset of {Vi | i ∈
〈n+1,m−1〉∩ [p] }. This set of composition factors does not contain Vn−m+1

itself, so T is not self-dual. Furthermore, the dual of T is not a summand of

W , since Vn−m+1 occurs only once as a composition factor of W , and nor is

it a summand of Q, since Vn−m+1 does not occur as the head of any of the

projective summands of Q. Thus the dual of T is not a summand of Vn⊗Vm,

contradicting the self-duality of Vn ⊗ Vm. So the sequence splits as required.

Implication (ii)

Suppose the theorem holds for (p− 1,m− 1) (where 2 6 m 6 p). Then,

using that 〈p− 1,m− 1〉 ∩ [p] = 〈p,m〉 ∩ [p], we have

Vp−1 ⊗ Vm−1
∼= Vp−m+1 ⊕

⊕
i∈〈p,m〉∩[p]
i 6=p−m+1

Pi.

Then by Proposition 16.2 we have a short exact sequence

0 Vp−m+1 ⊕
⊕

i∈〈p,m〉∩[p]
i 6=p−m+1

Pi Vp ⊗ Vm Vp+m−1 0.
µ
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Thus
⊕

i∈〈p,m〉∩[p] Vi is isomorphic to a submodule of soc(Vp ⊗ Vm). But

since Vp is projective, so is Vp ⊗ Vm (as the tensor product of a projective

module with any other module is projective [Alp86, Lemma 4, p. 47]). Thus⊕
i∈〈p,m〉∩[p] Pi is isomorphic to a submodule of Vp ⊗ Vm.

The proof is completed by counting dimensions to show that this sub-

module is the entire tensor product, unless m = p when we must identify one

additional summand. Recall from §15 that the projective indecomposable

KSL2(Fp)-modules are 2p-dimensional, except for P1 and Pp ∼= Vp which are

p-dimensional.

Suppose m 6= p. Then 1 /∈ 〈p,m〉 and also p > 2. If m is even, then

p /∈ 〈p,m〉 and |〈p,m〉 ∩ [p]| = m
2 , so dim(

⊕
i∈〈p,m〉∩[p] Pi) = m

2 · 2p = mp =

dim(Vp ⊗ Vm). If m is odd, then p ∈ 〈p,m〉 and |〈p,m〉 ∩ [p]| = m+1
2 , so

dim(
⊕

i∈〈p,m〉∩[p] Pi) = p+ m−1
2 · 2p = mp = dim(Vp ⊗ Vm). Thus, in either

case, Vp ⊗ Vm ∼=
⊕

i∈〈p,m〉∩[p] Pi.

Now suppose m = p. Then 1 ∈ 〈p, p〉, and so in the count above one of

the 2p-dimensional modules is replaced with a p-dimensional module, which

leaves us with dim(
⊕

i∈〈p,p〉∩[p] Pi) = dim(Vp ⊗ Vp) − p (and if p = 2 then

〈p, p〉 = {1, 3} and
⊕

i∈〈p,p〉∩[p] Pi = P1 is of dimension p = 2 = p2 − p as

well). Since Vp ⊗ Vp is projective, these p dimensions must be accounted

for by an additional copy of either P1 or Vp. Since Vp is self-dual, we have

Vp⊗Vp ∼= HomK(Vp, Vp). Noting that the direct sum of all trivial submodules

of HomK(Vp, Vp) is HomKG(Vp, Vp), which is isomorphic to V1 by Schur’s

Lemma, we deduce that V1 occurs in the socle of Vp ⊗ Vp with multiplicity 1.

Thus the missing summand is Vp. �

Example 16.14. Let G = SL2(Fp) and p = 17, and we consider V14 ⊗ V9.

We draw the (14, 9)-string below, and indicate those elements i for which

2p − i ∈ 〈14, 9〉 by joining i and 2p − i with a dotted line. The unpaired

elements give rise to simple summands, while the paired elements give rise to

projective indecomposable summands; the summand of V14 ⊗ V9 that arises

out of each element of 〈14, 9〉 ∩ [17] is written below it.
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6 8 10 12 14 16 17 18 20 22

V6 V8 V10 P12 P14 P16⊕ ⊕ ⊕ ⊕ ⊕∼=V14 ⊗ V9

The pairing-up of i and 2p− i in fact corresponds to an isomorphism

V2p−i ∼= Pi�Vi ⊕ 1[i = 1]Vp

proved in Lemma 16.16.

16.3. Decompositions of tensor products of projective modules

We now use Theorem 16.12 to decompose tensor products of combinations

of simple and projective indecomposable representations of SL2(Fp). We

establish the following decompositions (where we permit descriptions in terms

of tensor products whose decompositions have already been identified).

Theorem 16.15. Suppose G = SL2(Fp). For 2 6 n 6 p− 1 and 2 6 m 6 p,

we have

Pn⊗Vm ∼=



⊕
i∈〈n,m〉
i6p

Pi ⊕
⊕

i∈〈n,m〉
i>p

P2p−i ⊕ 1[n = m]Vp if n > m,

⊕
i∈〈m,n〉
i6p

Pi ⊕
⊕

i∈〈m,n〉
i>p

P2p−i ⊕ Pp−(m−n) ⊕
⊕

i∈〈p,m−n−1〉
i6p

P⊕2
i if n < m < p,

⊕
i∈〈p,n〉
i6p

P⊕2
i ⊕

⊕
i∈〈p,p−n−1〉

i6p

P⊕2
i ⊕ Pn if m = p,

while for all 1 6 m 6 p we have

P1 ⊗ Vm ∼= Pm ⊕ 1[m > 2](Vp ⊗ Vm−2) ⊕ 1[m = p]Vp.



16. DECOMPOSITIONS OF TENSOR PRODUCTS 181

For 2 6 n,m 6 p− 1 we have

Pn⊗Pm ∼= (Pn⊗Vm)⊕ (Pm⊗Vn)

⊕

(Pp−1⊗V2p−(n+m)) if n+m > p,

(Pp−1⊗Vp+1−(n+m))⊕ (Pn+m⊗Vp−1) if n+m < p,

while for all 1 6 m 6 p we have

P1⊗Pm ∼= P⊕2
m ⊕ 1[p > 2](Vp−2⊗Pm).

Our proof relies on two key facts: a tensor product involving a projective

module is itself projective [Alp86, Lemma 4, p. 47], and a projective module

is uniquely determined by its multiset of composition factors. The latter

follows from the invertibility of the Cartan matrix. Thus to determine the

decompositions in Theorem 16.15, it suffices to show that the given tensor

products have the claimed composition factors.

One approach to this is to apply our Clebsch–Gordan rule to every pair of

composition factors from the modules we are tensoring together (we know the

composition factors of the projective indecomposable modules, as recorded

in §15.2). This would allow us to find all the composition factors of the

tensor product, and multiplying by the inverse of the Cartan matrix would

then yield the multiplicities of the projective indecomposable summands.

However, we wish to avoid these onerous calculations.

The approach we take is to use the result below to pair up classes of

(not necessarily simple) modules into classes of projective modules (such

pairings are also made when applying our Clebsch–Gordan rule in the manner

described in Example 16.14). This method avoids using the structure of the

projective indecomposable modules in most cases.

Lemma 16.16. Suppose 1 6 n 6 p− 1. Then

V2p−n ∼= Pn�Vn ⊕ 1[n = 1]Vp.

Remark 16.17. The structure of the projective indecomposable modules is

known (see §15.2), so this corollary gives us the structure of Vi for p+ 1 6

i 6 2p− 1.
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Proof. Let 2 6 m 6 p. Via µ, we have an isomorphism

Vp+m−1
∼= Vp ⊗ Vm
Vp−1 ⊗ Vm−1

.

Then, applying Theorem 16.12, we have

Vp+m−1
∼=

⊕
i∈〈p,m〉∩[p]

Pi ⊕ 1[m = p]Vp

Vp−m+1 ⊕
⊕

i∈〈p,m〉∩[p]
i 6=p−m+1

Pi

∼= Pp−m+1�Vp−m+1
⊕ 1[m = p]Vp.

Taking n = p−m+ 1 gives the result. �

Whilst identifying composition factors in the propositions that follow, it

is convenient to use the notation of the Grothendieck group.

Definition 16.18. For an algebra A, the Grothendieck group G0(A) is the

abelian group with:

• a generator [V ] for every A-module V , and

• a relation [W ] = [U ] + [V ] for every short exact sequence 0 → U →
W → V → 0.

The important property of the Grothendieck group for our purposes is

that [U ] = [V ] if and only if U and V have the same multiset of composition

factors. Thus to decompose a projective module, it suffices to write its image

in the Grothendieck group as a sum of classes of projective indecomposable

modules.

Product of a simple and a projective. We begin with the case of a product of

a simple and a projective.
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Proposition 16.19. Suppose 2 6 n,m 6 p − 1 (and in particular p > 2).

Then:

Pn ⊗ Vm ∼=



⊕
i∈〈n,m〉
i6p

Pi ⊕
⊕

i∈〈n,m〉
i>p

P2p−i ⊕ 1[n = m]Vp if m 6 n,

⊕
i∈〈m,n〉
i6p

Pi ⊕
⊕

i∈〈m,n〉
i>p

P2p−i ⊕ Pp−(m−n) ⊕
⊕

i∈〈p,m−n−1〉
i6p

P⊕2
i if m > n.

Proof. We have that Vn⊗Vm is isomorphic to a submodule of Pn⊗Vm.

Using Lemma 16.16, for 2 6 n 6 p− 1 we have

Pn ⊗ Vm
Vn ⊗ Vm

∼= Pn�Vn ⊗ Vm

∼= V2p−n ⊗ Vm.

That is, in the Grothendieck group,

[Pn ⊗ Vm] = [Vn ⊗ Vm] + [V2p−n ⊗ Vm].

Suppose first that m 6 n. Then by Corollary 16.4, and observing that

〈2p− n,m〉 = 2p− 〈n,m〉, we have

[Pn ⊗ Vm] =
∑

i∈〈n,m〉

[Vi] +
∑

i∈〈2p−n,m〉

[Vi]

=
∑

i∈〈n,m〉

[Vi] + [V2p−i].

But Lemma 16.16 tells us that [Vi] + [V2p−i] = [Pmin{i,2p−i}] + 1[i ∈ {1, 2p−
1}][Vp] for 1 6 i 6 2p− 1 and i 6= p. Thus

[Pn ⊗ Vm] =
∑

i∈〈n,m〉
i6p

[Pi] +
∑

i∈〈n,m〉
i>p

[P2p−i] + 1[1 ∈ 〈n,m〉][Vp]

=
⊕

i∈〈n,m〉
i6p

[Pi]⊕
⊕

i∈〈n,m〉
i>p

[P2p−i]⊕ 1[n = m][Vp],

which completes the first case.

Now suppose m > n. As before, we use Lemma 16.16 and Corollary 16.4,

and this time we find

[Pn ⊗ Vm] =
∑

i∈〈m,n〉

[Vi] +
∑

i∈〈2p−n,m〉

[Vi]
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and we cannot pair up the summands as we did in the case m 6 n. However,

we do find that

〈2p−n,m〉={2p−n−m+1, 2p−n−m+3, . . . , 2p−n−m+(2n−1),

2p−n−m+(2n+1), . . . , 2p−n+m−3, 2p−n+m−1}

={2p−(m+n−1), 2p−(m+n−3), . . . , 2p−(m−n+1),

2p−(m−n)+1, . . . , 2p+(m−n)−3, 2p+(m−n)−1}

= (2p−〈m,n〉) t 〈2p,m−n〉.

Thus

[Pn ⊗ Vm] =
∑

i∈〈m,n〉

([Vi] + [V2p−i]) +
∑

i∈〈2p,m−n〉

[Vi]

= [Pm ⊗ Vn] + [V2p ⊗ Vm−n]

= [Pm ⊗ Vn] + [Pp−1 ⊗ Vm−n],

where the final equality holds because V2p
∼= V2 ⊗ Vp by Lemma 16.11 and

V2 ⊗ Vp ∼= Pp−1 for p > 2 by Theorem 16.12.

We can now use the first case to decompose each of the products in this

sum (or, if m− n = 1, simply using Pp−1 ⊗ V1
∼= Pp−1). The second product

becomes

[Pp−1 ⊗ Vm−n] =
∑

i∈〈p−1,m−n〉
i6p

[Pi] +
∑

i∈〈p−1,m−n〉
i>p

[P2p−i]

= [Pp−(m−n)] +
∑

i∈〈p,m−n−1〉∩[p]

2[Pi],

as required. �

Proposition 16.20. Suppose 2 6 m 6 p − 1 (and in particular p > 2).

Then

Vp ⊗ Pm ∼=
⊕

i∈〈p,m〉
i6p

P⊕2
i ⊕

⊕
i∈〈p,p−m−1〉

i6p

P⊕2
i ⊕ Pm.

Proof. We have

Vp ⊗ Pm�Vp ⊗ Vm ∼= Vp ⊗ V2p−m.
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Now

〈2p−m, p〉 = {p−m+ 1, p−m+ 3, . . . , 3p−m− 1}

= 〈p,m〉 t {p+m+ 1, . . . , 3p−m− 1}

= 〈p,m〉 t 〈2p, p−m〉

and so [V2p−m⊗ Vp] = [Vp⊗ Vm] + [V2p⊗ Vp−m]. But V2p
∼= Pp−1, so we have

Vp ⊗ Pm ∼= (Vp ⊗ Vm)⊕2 ⊕ (Pp−1 ⊗ Vp−m).

Using the modular Clebsch–Gordan rule and Proposition 16.19 gives the

decomposition into indecomposable modules. �

Product of two projectives. Next we deal with the case of a product of two

(non-simple) projectives.

Proposition 16.21. Suppose 2 6 m 6 n 6 p− 1 (and in particular p > 2).

Then

Pn ⊗ Pm ∼= (Pn ⊗ Vm)⊕ (Pm ⊗ Vn)

⊕

(Pp−1 ⊗ V2p−(n+m)) if n+m > p,

(Pp−1 ⊗ Vp+1−(n+m))⊕ (Pn+m ⊗ Vp−1) if n+m < p.

Proof. We have

Pn ⊗ Pm
Pn ⊗ Vm

∼= Pn ⊗ V2p−m

and

Pn ⊗ V2p−m
Vn ⊗ V2p−m

∼= V2p−n ⊗ V2p−m,

and so

[Pn ⊗ Pm] = [Pn ⊗ Vm] + [Vn ⊗ V2p−m] + [V2p−n ⊗ V2p−m].
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Now,

〈2p−m, 2p− n〉 = {n−m+ 1,m− n+ 3, . . . , 4p− n−m− 1}

= 〈n,m〉 t {n+m+ 1, . . . , 4p− n−m− 1}

= 〈n,m〉 t 〈2p, 2p− (n+m)〉.

Thus [V2p−m ⊗ V2p−n] = [Vn ⊗ Vm] + [V2p ⊗ V2p−(n+m)]. But [Vn ⊗ V2p−m] +

[Vn ⊗ Vm] = [Vn ⊗ Pm] and V2p
∼= Pp−1 (for p > 2), so

[Pn ⊗ Pm] = [Pn ⊗ Vm] + [Pm ⊗ Vn] + [Pp−1 ⊗ V2p−(n+m)].

If n+m > p, we are done.

If n+m < p, and since also n+m > 1, we have V2p−(n+m)
∼= Pn+m�Vn+m

.

Then [Pp−1⊗ V2p−(n+m)] = [Pp−1⊗Pn+m]− [Pp−1⊗ Vn+m]. We use the first

case to decompose

Pp−1 ⊗ Pn+m
∼= (Pp−1 ⊗ Vn+m)⊕ (Pn+m ⊗ Vp−1)⊕ (Pp−1 ⊗ Vp+1−(n+m)),

and so [Pp−1⊗V2p−(n+m)] = [Pp−1⊗Vp+1−(n+m)] + [Pn+m⊗Vp−1] giving the

result. �

Product with P1. We have so far avoided using the structure of the projective

indecomposable modules. Nevertheless, for the case of tensoring with P1 it is

most convenient to make use of our knowledge of their composition factors.

As described in §15.2, for p = 2 we have [P1] = 2[V1] whilst for p > 2 we

have:

[P1] = 2[V1] + [Vp−2],

[Pp−1] = 2[Vp−1] + [V2],

[Pi] = 2[Vi] + [Vp−i−1] + [Vp−i+1] for 2 6 i 6 p− 2.

Proposition 16.22. Suppose 1 6 m 6 p. Then

P1 ⊗ Pm ∼= P⊕2
m ⊕ 1[p > 2](Vp−2 ⊗ Pm).

Proof. Immediate from the structure of P1. �
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Proposition 16.23. Suppose 1 6 m 6 p− 1. Then

P1 ⊗ Vm ∼= Pm ⊕ 1[m > 2](Vp ⊗ Vm−2).

Proof. The case m = 1 is trivial. For the remaining cases, we have

p > 2. Observe that

[P1 ⊗ Vm] = 2[Vm] + [Vp−2 ⊗ Vm].

For m = 2, we have Vp−2 ⊗ V2
∼= Vp−3 ⊕ Vp−1, and so [P1 ⊗ V2] =

2[V2] + [Vp−3] + [Vp−1] = [P2].

Next suppose 3 6 m 6 p− 2. Then

2[Vm] + [Vp−2 ⊗ Vm] = 2[Vm] +
∑

i∈〈p−2,m〉

[Vi]

= 2[Vm] + [Vp−m−1] + [Vp−m+1] +
∑

i∈〈p,m−2〉

[Vi]

= [Pm] + [Vp ⊗ Vm−2].

Finally, for m = p− 1, we have

2[Vp−1] + [Vp−1 ⊗ Vp−2] = 2[Vp−1] +
∑

i∈〈p−1,p−2〉

[Vi]

= 2[Vp−1] + [V2] +
∑

i∈〈p,p−3〉

[Vi]

= [Pp−1] + [Vp ⊗ Vp−3]

as required. �

This completes the proof of Theorem 16.15.

16.4. Decompositions of symmetric and exterior squares

Invoking the Wronskian isomorphism (Theorem C from Chapter III),

we use our Clebsch–Gordan rule to inductively decompose symmetric and

exterior squares. We find that, for 1 6 m 6 p, the symmetric square Sym2 Vm

contains those summands of Vm ⊗ Vm indexed by elements congruent to

2m− 1 modulo 4, while the exterior square
∧2 Vm contains those indexed by

elements congruent to 2m+ 1 modulo 4.

We first note that the two symmetric squares coincide in this setting.
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Lemma 16.24. Suppose 1 6 m 6 p. Then Sym2 Vm ∼= Sym2 Vm.

Proof. This is immediate for p > 2 from Proposition 3.5, and for

m = 1 from observing Sym2 V1
∼= V1

∼= Sym2 V1. For m = p = 2, we have

V2 = E and hence we are required to show that Sym2E ∼= Sym2E. But

(Sym2E)∗ ∼= (Sym2E)◦ ∼= Sym2E by Propositions 3.2 and 3.7, so this is

equivalent to the statement that Sym2E ∼= V3 is self-dual. Indeed, from

Lemma 16.16, we have V3
∼= V1 ⊕ V2 which is self-dual. �

With the notation Vm = Symm−1E, the Wronskian isomorphism for

squares here becomes

(16.25) Sym2 Vm
∼=
∧2 Vm+1

for any m > 1. Combining with Lemma 16.24, this becomes

(16.26) Sym2 Vm ∼=
∧2 Vm+1

for 1 6 m 6 p.

Remark 16.27. An isomorphism Sym2 Vm →
∧2 Vm+1 can be identified

explicitly for p 6= 2 without appealing to Theorem C: it can be shown that

the map f · h 7→ Xf ∧ Y h − Y f ∧Xh, where f, h ∈ Vm, is bijective when

p 6= 2. Up to a scalar, this map can be seen as the inverse to the isomorphism∧r Vm+r−1 → Symr Vm of representations of SL2(C) described in [AC07,

§2.5]. Indeed, in the case r = 2, Abdesselam and Chipalkatti’s isomorphism

is given by

f ∧ h 7→ 1

2m2

( ∂f
∂X
· ∂h
∂Y
− ∂f

∂Y
· ∂h
∂X

)
where f, h ∈ Vm+1; if the scalar factor is removed, this defines an SL2(K)-

equivariant map, and composing with the map above yields f · h 7→ 2mf · h.

We need also the well-known short exact sequence

(16.28) 0
∧2 U U ⊗ U Sym2 U 0

for any module U , which is obtained by identifying
∧2 U as the kernel of the

canonical surjection U ⊗ U � Sym2 U . In characteristics other than 2, this

becomes the familiar decomposition U ⊗ U ∼= Sym2 U ⊕ ∧2 U (as a small
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consequence of the following theorem, we see that this decomposition of the

tensor square also holds in characteristic 2 when U is a simple representation

of SL2(Fp)).

Theorem 16.29. Suppose G = SL2(Fp) and 1 6 m 6 p. Then

Sym2 Vm
∼= Sym2 Vm ∼=

⊕
i∈〈m,m〉∩[p]
2p−i/∈〈m,m〉

i≡2m−1 (mod 4)

Vi ⊕
⊕

i∈〈m,m〉∩[p]
2p−i∈〈m,m〉

i≡2m−1 (mod 4)

Pi ⊕ 1[m = p]Vp

and

∧2 Vm ∼=
⊕

i∈〈m,m〉∩[p]
2p−i/∈〈m,m〉

i≡2m+1 (mod 4)

Vi ⊕
⊕

i∈〈m,m〉∩[p]
2p−i∈〈m,m〉

i≡2m+1 (mod 4)

Pi.

Proof. We induct on m. The case m = 1 is immediate: Sym2 V1
∼= V1

and
∧2 V1 = 0.

Suppose the proposition holds for some m where 1 6 m 6 p− 1. Then

using (16.26) we have

∧2 Vm+1
∼= Sym2 Vm ∼=

⊕
i∈〈m,m〉∩[p]
2p−i/∈〈m,m〉

i≡2m−1 (mod 4)

Vi ⊕
⊕

i∈〈m,m〉∩[p]
2p−i∈〈m,m〉

i≡2m−1 (mod 4)

Pi.

Observe that 〈m+1,m+1〉\〈m,m〉 = {2m+1, 2p−(2m+1)} has no elements

congruent to 2m− 1 modulo 4. Thus replacing 〈m,m〉 with 〈m+ 1,m+ 1〉
in the above decomposition does not alter the summands; that is

∧2 Vm+1
∼=

⊕
i∈〈m+1,m+1〉∩[p]
2p−i/∈〈m+1,m+1〉
i≡2m−1 (mod 4)

Vi ⊕
⊕

i∈〈m+1,m+1〉∩[p]
2p−i∈〈m+1,m+1〉
i≡2m−1 (mod 4)

Pi,
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as required. Then using the short exact sequence (16.28) and the Clebsch–

Gordan rule, we have

Sym2 Vm+1
∼= Vm+1 ⊗ Vm+1�∧2 Vm+1

∼=

⊕
i∈〈m+1,m+1〉∩[p]
2p−i/∈〈m+1,m+1〉

Vi ⊕
⊕

i∈〈m+1,m+1〉∩[p]
2p−i∈〈m+1,m+1〉

Pi ⊕ 1[m+ 1 = p]Vp

⊕
i∈〈m+1,m+1〉∩[p]
2p−i/∈〈m+1,m+1〉
i≡2m−1 (mod 4)

Vi ⊕
⊕

i∈〈m+1,m+1〉∩[p]
2p−i∈〈m+1,m+1〉
i≡2m−1 (mod 4)

Pi

∼=
⊕

i∈〈m+1,m+1〉∩[p]
2p−i/∈〈m+1,m+1〉
i≡2m+1 (mod 4)

Vi ⊕
⊕

i∈〈m+1,m+1〉∩[p]
2p−i∈〈m+1,m+1〉
i≡2m+1 (mod 4)

Pi ⊕ 1[m+ 1 = p]Vp

as required. �
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17. Random walk on indecomposable summands

of tensor products

In this section we investigate a new family of Markov chains, defined by

tensoring by a fixed simple module and choosing a non-projective summand

of the result. In §17.1 we investigate the graph on which the walk takes

place; in §17.2 we investigate the walk itself. Let G = SL2(Fp) and p 6= 2

throughout this section.

17.1. Tables of multiplicities

We examine the table of multiplicities of simple modules as indecompos-

able summands of tensor products of simple modules, as well as the graph

which has this table as its adjacency matrix. This table has symmetries that

reveal properties of the tensor products of representations of G. Furthermore,

the Markov chain defined in Definition 17.14 is shown to be a walk on this

graph, so our observations here aid our understanding of that Markov chain.

We use [ : ] to denote multiplicity as an indecomposable summand.

Definition 17.1. For n ∈ [p − 1], let A(n) be the matrix with entries

A
(n)
i,j = [Vi ⊗ Vn : Vj ]. Let G(n) be the (directed) graph (with loops) whose

adjacency matrix is A(n). The parameter n is suppressed unless there is need

to emphasise it.

The matrix A is depicted in Figure 17.1. It is visually apparent that A

is symmetric; this motivates our next result.

Lemma 17.2. Suppose 1 6 i, j, k 6 p− 1. The following are equivalent:

(i) Vk is a summand of Vi ⊗ Vj;
(ii) Vi is a summand of Vj ⊗ Vk;

(iii) Vj is a summand of Vk ⊗ Vi;
(iv) i + j + k ≡ 1 (mod 2), i + j + k < 2p, and k < i + j, i < j + k and

j < k + i.

In particular, A is a symmetric matrix.

Proof. Observe that (iv) is symmetric in i, j and k, and so it suffices

to show that (i) and (iv) are equivalent. Indeed, Theorem 16.12 tells us that
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1 2 ··· n



1 1

2 1 1
... 1 1 1

. .
.

. .
. . . .

. . .

1 1 1 1 1

n 1 1 1 1 1 1

1 1 1 1 1 1

. . .
. . .

. . .
. . .

. . .
. . .

1 1 1 1 1 1 p−n

1 1 1 1 1

. . .
. . . . .

.
. .
.

1 1 1

1 1

1 p−1

p−n p−1

Figure 17.1. The matrix A (here with n < p− n)

(i) holds if and only if k ≡ i + j − 1 (mod 2) and max{i − j, j − i} < k <

min{i+ j, 2p− (i+ j)}, which easily rearranges to (iv). �

Thus G can be viewed as an undirected graph (with loops); we do so

from now on. Some small examples of G are depicted in Figure 17.2.

There is another visually apparent symmetry of the adjacency matrix A:

it is invariant under rotation by 180 degrees. We give various interpretations

of this fact in Proposition 17.6. To give these interpretations, we make the

following definitions.

Definition 17.3. Let T be the (p − 1) × (p − 1) matrix defined by Ti,j =

[i+ j = p].
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1

2

3

4

5

6

(a) n = 2

1

2

3

4
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(b) n = 3

1

6
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4

5
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(c) n = 4

1

6

5 3

2 4

(d) n = 5

Figure 17.2. The graphs G(n), for p = 7 and 2 6 n 6 p− 2

That is, T is the matrix with 1s on the antidiagonal:

T =

 1

. .
.

1

 .

It is the basis-change matrix for reversing the order of the basis, and is

self-inverse. Also:

• left-multiplying by T reflects a matrix in the horizontal midline;

• right-multiplying by T reflects a matrix in the vertical midline;

• conjugating by T rotates a matrix by 180 degrees.

Definition 17.4. Let Ω0 (−) denote the projective-free part of a module.

Definition 17.5. Let p be the subgroup of the Grothendieck group G0(KG)

generated by classes of projective modules.

Note that G0(KG) can be made into a (commutative) ring via tensoring,

and that p is an ideal of this ring. Recall that a quotient ring is naturally a

(left) module for the original ring by (left) multiplication.
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Proposition 17.6 (Interpretations of rotational symmetry of A).

(a) Vk is a summand of Vi⊗Vj if and only if it is a summand of Vp−i⊗Vp−j,
for all 1 6 i, j, k 6 p− 1.

(b) A(n) = TA(p−n) = A(p−n)T .

(c) TAT = A.

(d) The map i 7→ p−i is a graph automorphism of G, and hence the induced

subgraph on even vertices is isomorphic to the induced subgraph on

odd vertices.

(e) Ω0 (Vi ⊗ Vj) ∼= Ω0 (Vp−i ⊗ Vp−j) for all 1 6 i, j 6 p− 1.

(f) [Vi ⊗ Vj ] + p = [Vp−i ⊗ Vp−j ] + p for all 1 6 i, j 6 p− 1.

(g) The K-linear automorphism ξ of G0(KG)�p defined by ξ : [Vi] + p 7→
[Vp−i] + p is G0(KG)-equivariant.

Proof. Statement (a) and the first equality in (b) are equivalent, and

the second equality in (b) follows from the first since A and T are symmetric.

The statements (c) and (d) are equivalent, and are implied by (b). The

statement (e) clearly implies (f), and given that the projective-free parts of

the tensor products of simple modules are multiplicity-free sums of simple

modules, both are equivalent to (a).

To see that (g) follows from (b), let I ⊆ [p−1] be such that Ω0(Vj⊗Vk) ∼=⊕
i∈I Vi. Then, by the second equality in (b), we have Ω0(Vj ⊗ Vp−k) ∼=⊕
i∈I Vp−i; thus

ξ([Vj ⊗ Vk] + p) = ξ

(∑
i∈I

[Vi] + p

)
=
∑
i∈I

[Vp−i] + p

= [Vj ⊗ Vp−k] + p,

as required.

Thus it suffices to show (a) holds. Indeed, condition (iv) of Lemma 17.2

is invariant under taking both i 7→ p− i and j 7→ p− j. �

Remark 17.7. The observations of Lemma 17.2 and Proposition 17.6 can

be seen as observations about the fusion category corresponding to the
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algebraic group SL2(K) described in [AP95, Section 2]. The tensor product

in this category is “reduced”, in a sense which in our setting means “modulo

projectives”. The quotient ring G0(K)�p is known as the fusion ring for this

category. The fusion rules state how reduced tensor products decompose

in this category, and thus are specified by our Lemma 17.2. The observed

symmetries of these fusion rules can be deduced either axiomatically [Mat00,

Axiom 3, p. 183] or as a consequence of the modular Verlinde formula [Mat00,

Theorem 9.5].

We next observe that a certain submatrix of A contains all the information

of A, and use the resulting simplification of the structure of A to identify

the connected components of G.

Definition 17.8. Let A
(n)

be the p−1
2 ×

p−1
2 submatrix of (a conjugate of)

A defined by

A
(n)
i,j =

A
(n)
2i−1,2j−1 if n is odd;

A
(n)
2i−1,p+1−2j if n is even.

That is, if the vertices are reordered to 1, 3, . . . , p− 2, p− 1, p− 3, . . . , 4, 2

(the odd integers followed by the even integers, with the former in ascending

order and the latter in descending order), then A is the upper-left block of

A when n is odd and is the upper-right block of A when n is even.

Lemma 17.9. The matrix A has the following properties:

(a) under the ordering 1, 3 . . . p− 2, p− 1, . . . , 4, 2, the matrix A is of the

form

A =



(
A ∗
∗ A

)
if n is odd,

(
∗ A

A ∗

)
if n is even,

where ∗ denotes an unspecified matrix;

(b) A
(n)
i,j = 1 if and only if 2|i − j| < r < 2(i + j − 1) < 2p − r, where

r = n if n is odd and r = p− n if n is even.

(c) A
(p−n)

= A
(n)

;
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(d) A is symmetric;

(e) for 1 < n < p− 1, the graph with adjacency matrix A is connected.

Proof. By Proposition 17.6(c) we have A2i−1,2j−1 = Ap+1−2i,p+1−2j ,

and so (under the new ordering) the upper-left and lower-right blocks of A

are the same. Similarly the upper-right and lower-left blocks are the same,

and (a) follows.

The condition for Ai,j to be nonzero is obtained from condition (iv) of

Lemma 17.2 with the appropriate values of i and j substituted. Properties

(c) and (d) are easily verified using this condition.

It follows from (b) that A has nonzero entries precisely in a rectangle

bounded by the straight lines determined by these inequalities; we draw

matrix A in Figure 17.3. The connectedness of its graph is then clear provided

r 6= 1. �

Lemma 17.10.

(a) If n is odd, then G is disconnected, with each connected component a

subset of either the odd integers or the even integers.

(b) If n is even, then G is bipartite, with classes the odd integers and the

even integers.

(c) When the vertices are ordered as 1, 3, . . . , p− 2, p− 1, p− 3, . . . , 4, 2,

we have

A = A⊗
(

0 1

1 0

)n+1

.

Proof. Let 1 6 i 6 p − 1. Observe that the neighbours of i are all

elements of 〈i, n〉 or 〈n, i〉 (according to whether i > n or i 6 n). Furthermore,

elements of these strings are all of the same parity, which is the parity of

i + n − 1. Thus if n is odd, the neighbours of i are of the same parity as

i, whilst if n is even, the neighbours of i are of different parity to i. The

statements (a) and (b) are then immediate.

That is, under the new ordering, when n is even the diagonal blocks of A

are zero, and when n is odd the off-diagonal blocks are zero. The expression

as a Kronecker product then follows from Lemma 17.9(a). �
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1 2 ... r+1
2



1 1

2 1 1 1
... 1 1 1 1 1

. .
.

. .
. . . .

. . .

1 1 1 1 1 1 1 1 1

r+1
2 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

. . .
. . .

. . .
. . .

. . .
. . .

1 1 1 1 1 1 1 1 1 1 1 p−r
2

1 1 1 1 1 1 1 1 1 1 p−r+2
2

. . .
. . . . .

.
. .
.

1 1 1 1 1 1

1 1 1 1

1 1 p−1
2

p−r
2

p−r+2
2

p−1
2

Figure 17.3. The matrix A (here with r < p− r), where r = n if n is odd

and r = p− n if n is even.

Proposition 17.11.

(a) If n is odd and n > 1, then G has precisely two connected components,

the odd integers and the even integers, and they are isomorphic.

(b) If n is even and n < p− 1, then G is connected.

Proof. For n odd, A is the adjacency matrix for the subgraphs of

G on odd vertices and on even vertices, so (a) follows immediately from

Lemma 17.9(e).

For n even, A is the adjacency matrix for the quotient graph of G with i

and p− i identified. Again using Lemma 17.9(e), since G is bipartite (with

each of i and p− i in a distinct class), to show (b) it suffices to show that i

is reachable from p− i for some i. Indeed, A has a nonzero diagonal entry



198 V. TENSOR PRODUCTS OF REPRESENTATIONS OF SL2(Fp)

(at n+1
2 ), and so the two vertices identified to form the corresponding vertex

of the quotient are adjacent. �

We conclude this section by finding the degrees of the vertices in G. The

degree of i in G is also the number of nonzero entries in the ith row of A,

and is the number of non-projective indecomposable summands of Vi ⊗ Vn.

Definition 17.12. For 1 6 i 6 p− 1, let d(i) be the degree of i in G (where

a loop is considered to contribute 1 to the degree). The dependence of d on

n is suppressed, since it is always clear from context.

Lemma 17.13. For 1 6 i 6 p− 1, we have

d(i) = min{i, p− i, n, p− n}.

Furthermore,

p−1∑
i=1

d(i) = n(p− n).

Proof. Clearly d(i) is symmetric in i and n, so for the first equality it

suffices to show that d(i) = min{i, p− n} when i 6 n. By Theorem 16.12,

the number of simple non-projective summands of Vn ⊗ Vi is the number of

elements j of 〈n, i〉 for which 2p− j /∈ 〈n, i〉.
If i+ n− 1 < p (equivalently, i 6 p− n) then this is all the elements of

〈n, i〉, of which there are i.

If i+ n− 1 > p (equivalently, i > p− n), then the number of j ∈ 〈n, i〉
such that 2p− j ∈ 〈n, i〉 is

2

⌊
i+ n− 1− p

2

⌋
+ 1[i+ n− 1 is odd] = i+ n− p,

and so d(i) = i− (i+ n− p) = p− n.
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We now find the sum of the d(i). Let m = min{n, p− n}. We have:

p−1∑
i=1

d(i) =

p−1∑
i=1

min{i, p− i, n, p− n}

= 2

p−1
2∑
i=1

min{i,m}

= 2

(
p− 1

2
−m

)
m+ 2

m∑
i=1

i

= m(p− 1− 2m) +m(m+ 1)

= m(p−m)

= n(p− n)

as required. �

17.2. The random walk

We now introduce the random walk itself.

Definition 17.14 (Non-projective summand random walk). Fix n ∈ [p−
1], w a function that assigns a positive weighting to each non-projective

indecomposable KG-module, and ν a distribution on the non-projective

simple KG-modules. Let the non-projective summand random walk be the

(discrete time) Markov chain on the set of non-projective indecomposable

KG-modules with initial distribution ν in which the probability of a step

from U to V is

Q
(n)
UV =

w(V )[U ⊗ Vn : V ]∑
M w(M)[U ⊗ Vn : M ]

,

where the sum is over all non-projective indecomposable modules M (and

[ : ] denotes multiplicity as an indecomposable summand, as in §17.1). The

parameter n is suppressed unless there is need to emphasise it.

Remark 17.15.

(i) If U is a simple non-projective KG-module, Theorem 16.12 implies

that U ⊗ Vn indeed has non-projective indecomposable summands, and that

these summands are simple. Thus the chain is well-defined and remains on

simple non-projective KG-modules throughout. The states of the chain can
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therefore be labelled with the dimensions of the modules, taking values in

the finite set [p− 1].

(ii) Theorem 16.12 implies that the non-projective part of a tensor

product of simple modules is multiplicity-free, so [U ⊗ Vn : M ] ∈ {0, 1} for

all M .

(iii) If we were to allow steps to projective indecomposable modules,

these modules would form an absorbing set (in the sense that once the chain

hit a projective module it would stay on projective modules for all time).

This definition allows us to consider a recurrent chain on the (non-projective)

simple modules.

(iv) There are two trivial cases to be excluded: if n = 1, we never step

away from the initial state; if n = p−1, then Vp−i is the unique non-projective

indecomposable summand of Vi ⊗ Vp−1, so at each step we switch between

the initial state i and p− i. From now on we assume 2 6 n 6 p− 2.

(v) If we were to replace SL2(Fp) with an arbitrary group and define

the non-projective summand walk analogously, it may not be clear how

many states our chain has, or whether that number is finite. For SL2(Fp),
however, we could have deduced that there are only finitely many states

without explicitly knowing any decompositions: since SL2(Fp) has a cyclic

Sylow p-subgroup, all its simple representations are algebraic (in the sense

of satisfying a polynomial over Z in the Green ring), and hence their tensor

powers collectively have only finitely many summands [Cra07, Lemma 1.1,

Corollary 1.6].

An illustrative example of our chain is given below. Note that when

w ≡ 1, the summands are chosen uniformly at random; this case, and the

case where w(i) = i (in which modules are weighted by their dimension), are

described for general n at the end of this section.

Example 17.16. Suppose w ≡ 1 and n = 2. We have that

Vi ⊗ V2
∼=


V2 if i = 1,

Vi−1 ⊕ Vi+1 if 2 6 i 6 p− 2,

Vp−2 ⊕ Pp if i = p− 1.
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Thus the non-projective summand random walk is a symmetric random walk

in one dimension with reflecting boundaries. The transition matrix is

1
1
2

1
2

1
2

1
2

1
2

1
2

. . .
. . .

1
2

1
2

1
2

1
2

1


and the stationary distribution is 1

2(p−2)(1, 2, 2, . . . , 2, 1).

Our key observation while studying the non-projective summand random

walk is that it is the random walk on the graph G (defined in §17.1) in which

the probability of moving from a vertex i to a neighbour j is proportional to

w(j). Indeed, the transition matrix Q has nonzero entries precisely where

A (the adjacency matrix for G) does, and the transition probabilities are

proportional to the weighting of the destination. That is,

Qi,j =
w(j)∑

il∈E(G)w(l)
Ai,j .

We use the properties of G given in §17.1 to shed light on the non-

projective summand random walk. The first relevant property of G is that it

is undirected, which implies that the chain is reversible and diagonalisable and

allows us to find a stationary distribution as demonstrated in the following

proposition.

Proposition 17.17. Let π be the distribution defined by

πi =
w(i)

∑
il∈E(G)w(l)

C
.

where C =
∑

x∈V (G)

∑
xy∈E(G)w(y).

Then π is a stationary distribution in detailed balance with Q, and hence

the random walk is reversible and diagonalisable.
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Proof. It suffices to verify the detailed balance equations for π (noting

that diagonalisability follows from reversibility [PR13, Section 2.4]). Observe:

πiQi,j =
w(j)∑

ik∈E(G)w(k)

w(i)
∑

ik∈E(G)w(k)

C
1[ij ∈ E(G)]

=
w(i)w(j)

C
1[ij ∈ E(G)]

= πjQj,i,

as required. �

That our walk takes place on an undirected graph also implies that

the communicating classes of our Markov chain are all closed (that is, they

are irreducible chains themselves) and they are precisely the connected

components of G. Making use of our results about the connectedness and

periodicity of G, we obtain the following proposition.

Proposition 17.18.

(a) If n is odd, then the non-projective summand random walk is reducible

into two chains, one on the even states and one on the odd states,

which are each irreducible and aperiodic.

(b) If n is even, then the non-projective summand random walk is irre-

ducible and periodic with period 2.

Proof. The description of the irreducible components follows immedi-

ately from the description of the connected components of G in Proposi-

tion 17.11.

A walk on an undirected graph necessarily has period at most 2 (since

any vertex can be revisited after two steps). The walk has period equal to 2

if and only if the graph contains no odd cycles and no loops, which is if and

only if the graph is bipartite—and the walk is aperiodic otherwise. Thus

the periodicity claims follow from Lemma 17.10(b) and the observation that

when n is odd, each component of G has loops (at p−1
2 and p+1

2 ). �

Remark 17.19. Thus for n even, the chain has a unique stationary dis-

tribution but it does not necessarily converge to it. Meanwhile, for n odd,
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each subchain has a unique stationary distribution which it converges to,

and the stationary distributions of the entire chain are precisely the convex

combinations of these distributions.

If w satisfies w(i) = w(p − i) for all i, then Q has the same rotational

symmetry as A, and several of the results from §17.1 carry over. Some of

these results are helpful for identifying the eigenvalues of Q; the rate of

convergence to equilibrium is determined by the second-largest (in absolute

value) eigenvalue, so this in turn is helpful for finding the mixing time for

the Markov chain.

Let Q be the submatrix of (a conjugate of) Q defined analogously to A.

Proposition 17.20. Suppose w(i) = w(p− i) for all i. Then:

(a) Q(n) = TQ(p−n) = Q(p−n)T ;

(b) TQT = Q;

(c) the non-projective summand random walk is invariant under the rela-

belling i 7→ p− i;
(d) if n is odd, the two irreducible subchains are isomorphic;

(e) Q
(p−n)

= Q
(n)

;

(f) with the vertices are ordered as 1, 3, . . . , p− 2, p− 1, p− 3, . . . , 4, 2, we

have

Q = Q⊗
(

0 1

1 0

)n+1

;

(g) if n is odd, every eigenvalue of Q has even multiplicity; if n is even,

the eigenvalues of Q come in signed pairs;

(h) the non-projective summand random walk has mixing time bounded by

tmix(ε) 6
1

1− λ?
log

(
1

εmini(πi)

)
where λ? = max{ |λ| | λ 6= 1 is an eigenvalue of Q } and π is the

stationary distribution from Proposition 17.17.

Proof. Statements (a) to (f) are entirely analogous to results in §17.1,

using w(i) = w(p− i) to deduce that the entries in the desired places of Q

are not only nonzero but also equal.
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Once we have the Kronecker product expression in (f), we see immediately

that if Q has eigenvector-eigenvalue pairs {(v1, λ1), . . . , (v p−1
2
, λ p−1

2
)}, then

the eigenvector-eigenvalue pairs of Q are, if n is odd

{ (vi ⊗ ( 1
0 ), λi) | 1 6 i 6 p−1

2 } t { (vi ⊗ ( 0
1 ), λi) | 1 6 i 6 p−1

2 },

and if n is even

{ (vi ⊗ ( 1
1 ), λi) | 1 6 i 6 p−1

2 } t {
(
vi ⊗

(
1
−1

)
,−λi

)
| 1 6 i 6 p−1

2 }.

Both parts of (g) then follow.

Statement (h) is obtained by applying [LP17, Theorem 12.4, p. 163]

to each irreducible component with transition matrix Q when n is odd, or

to the lazy chain with transition matrix 1
2(Q+ I) when n is even. Indeed,

when n is even, the eigenvalues of Q coming in signed pairs implies that the

second-largest eigenvalue of 1
2(Q+ I) is λ?+1

2 ; halving the resulting mixing

time to account for the fact that the lazy chain converges at half the rate of

the original yields the required value. �

In fact, for n even, the eigenvalues still come in signed pairs, regardless

of the weighting: it is always the case that Q has nonzero entries only in the

off-diagonal p−1
2 ×

p−1
2 blocks, and if ( uv ) is an eigenvector with eigenvalue λ

for such a matrix, then
(

u
−v
)

is an eigenvector with eigenvalue −λ.

We conclude by exhibiting our results in the cases w ≡ 1 and w(i) = i.

Recall from Definition 17.12 that d(i) is the degree of i in G.

Example 17.21. Let w ≡ 1. Then

Qi,j =
Ai,j
d(i)

.

This transition matrix is shown explicitly in Figure 17.4. Trivially

w(i) = w(p − i), and so Q satisfies TQT = Q, and for n odd the the two

irreducible subchains are isomorphic.

By Lemma 17.13 and Proposition 17.17, a stationary distribution is

πi =
min{i, p− i, n, p− n}

n(p− n)
.
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Figure 17.4. The transition matrix Q when w ≡ 1, in the cases 2n < p

(top) and 2n > p (bottom). This choice of w is discussed in Example 17.21.
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Observe that πT = π. In particular, this stationary distribution assigns

equal probability to being on an even or an odd state; that is,∑
i≡0 (mod 2)

πi =
∑

i≡1 (mod 2)

πi =
1

2
.

Thus, for n even, the chain converges to the stationary distribution, provided

that the initial distribution ν has equal weighting for even and odd states or

that the chain is made lazy by taking the transition matrix to be 1
2(Q+ I).

Meanwhile, for n odd, π is the stationary distribution with equal weighting

given to the even-state and odd-state walks.

If n ∈ {p−1
2 , p+1

2 }, it can be shown that the eigenvalues of Q are

{1,−1
2 ,

1
3 , . . . , (−1)

p+1
2 2

p−1}.

If n is odd, the eigenvalues of Q are the eigenvalues in this set each with

multiplicity 2; if n is even, the eigenvalues are {±1,±1
2 , . . . ± 2

p−1} (both

cases by the proof of Proposition 17.20(g)). Then by Proposition 17.20(h),

the mixing time of the walk is bounded by

tmix(ε) 6 2 log
(
p2−1

4ε

)
.

The case of w ≡ 1 and n ∈ {p−1
2 , p+1

2 }, n odd, is an example of an

involutive walk defined by Britnell and Wildon [BW22]: up to relabelling the

states, each of our irreducible chains is in their notation the γ(0,0)-involutive

random walk on n, and the occurrence of the eigenvalues stated above is a

consequence of [BW22, Theorem 1.5].

Example 17.22. Suppose w(i) = i for each i; that is, each module has a

chance of being chosen proportional to its dimension. Of course, w(i) 6=
w(p− i), and so the results of Proposition 17.20 may not hold (in particular,

the two irreducible chains when n is odd are not isomorphic). Nevertheless

we can compute the transition probabilities and the stationary distribution.

For fixed i we have∑
ij∈E(G)

j = (number of neighbours of i)×(mean value of the neighbours of i)

= d(i)×mean{ j | Vj is a summand of Vi ⊗ Vn }.
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If i + n 6 p, all of the composition factors of Vi ⊗ Vn are summands, and

so their average dimension is max{i, n}, the midpoint of the (i, n)-string or

the (n, i)-string (as appropriate). If i+ n > p, the midpoint of the relevant

section of the string is instead

(|i− n|+ 1) + (2p− (i+ n− 1))

2
= p−min{i, n}.

Also, by Lemma 17.13,

d(i) =

min{i, n} if i+ n 6 p,

p−max{i, n} if i+ n > p.

Thus

∑
ij∈E(G)

j =

d(i) max{i, n} if i+ n 6 p,

d(i)(p−min{i, n}) if i+ n > p

=

in if i+ n 6 p,

(p− i)(p− n) if i+ n > p.

Then

Qi,j =


j
in if i+ n 6 p and Ai,j 6= 0,

j
(p−i)(p−n) if i+ n > p and Ai,j 6= 0,

0 otherwise.

It can be shown that
∑

i∈[p−1]

∑
ij∈E(G) j = 1

6np(p − n)(2p − n). Then

by Proposition 17.17 a stationary distribution is

πi =


6i2

p(p− n)(2p− n)
if i+ n 6 p,

6i(p− i)
np(2p− n)

if i+ n > p.



Glossary of symbols

General

G a group

K a field

p a prime; characteristic of K

q a power of p; size of K (if K finite)

n a positive integer; a parameter for matrix groups

r a positive integer; a parameter for the symmetric group

Fp the finite field of order p; the prime subfield of K

U, V K-vector spaces; representations of G over K

d dimension of V

B set of entries for a tableaux; basis for V (frequently viewed as [d])

ρV homomorphism representing the action of G on V

1[−] indicator function for propositions (evaluates to 1 if proposition is true, 0 otherwise)

G/H set of (representatives of) the left cosets gH of H in G

H\G set of (representatives of) the right cosets Hg of H in G

F\G/H set of (representatives of) the double cosets FgH of F and H in G

General linear and symmetric groups

GLn(K) general linear group of invertible n× n matrices over K

SLn(K) special linear group of n× n matrices over K with determinant 1

Sr symmetric group on r symbols

E natural representation of GLn(K) §0.6, p. 13

Xi basis element of E

∆λE a Weyl module for GLn(K)

∇λE a dual Weyl module for GLn(K)

Lλ(E) = soc∇λE = ∆λE�rad ∆λE , a simple KGLn(K)-module §4.2, p. 56

−ν ν-weight space of a representation of GLn(K) Definition 6.1, p. 66

W natural permutation representation of Sr §4.1, p. 55

Sλ = ∇λsymW , a Specht module for Sr §4.1, p. 55

208
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F Schur functor Definition 6.5, p. 67

G⊗ left-adjoint inverse Schur functor Definition 6.12, p. 74

GHom right-adjoint inverse Schur functor Definition 6.16, p. 78

Multilinear algebra

Symr (upper) symmetric power (a quotient of a tensor power) §0.6, p. 14

Symr lower symmetric power (a submodule of a tensor power) §3.2, p. 36∧r exterior power (a quotient of a tensor power) §0.6, p. 14

−sym restriction to subspace of symmetric type §1.2, p. 18

−∗ (usual) dual (for representations of any group) §3.1, p. 34

−◦ contravariant dual (for representations of matrix groups) §3.1, p. 34

∇λ Schur endofunctor Definition 2.3, p. 27

∆λ Weyl endofunctor Definition 3.9, p. 40

e the map
∧λ′ V � ∇λV defined by |t| 7→ e(t) §2.2, p. 28

Λ the map TbxλV �
∧λ′ V defined by t 7→ |t|; restricts to a map Symλ V � ∆λV

Tableaux combinatorics

|λ| size of λ, the sum of its parts §1.1, p. 16

`(λ) length of λ, the number of its parts §1.1, p. 16

[λ] Young diagram of λ §1.1, p. 16

Tbxλ space of tableaux of shape λ, isomorphic to the tensor power −⊗|λ| §1.1, p. 17

CSYT(λ) column standard tableaux of shape λ §1.1, p. 17

RSSYT(λ) row semistandard tableaux of shape λ §1.1, p. 17

SSYT(λ) semistandard tableaux of shape λ §1.1, p. 17

RPP(λ) =
∏λ′1
i=1 Srowi[λ], group of row preserving permutations

rstab(t) = stab t ∩ RPP(λ), row stabiliser of t

CPP(λ) =
∏λ1
j=1 Scolj [λ], group of column preserving permutations

[t] row tabloid of t §1.4, p. 19

rsym(t) row symmetrisation of t Definition 3.8, p. 40

|t| (alternating) column tabloid of t §1.5, p. 20

<r,∼r row ordering on tableaux §1.6, p. 21

<c,∼c column ordering on tableaux §1.6, p. 21
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e(t) polytabloid of t Definition 2.1, p. 26

e(t) copolytabloid of t Definition 3.11, p. 42

R(t,A,B) a Garnir relation Definition 1.8, p. 23

R(t,i,j) a snake relation Definition 1.10, p. 25

GRλ space of Garnir relations

R

(t,A,B) a row Garnir relation Definition 3.16, p. 46

R

(t,i,(j,j′)) a row snake relation Definition 3.16, p. 46

G

Rλ space of row Garnir relations

Φ a function with respect to which snake relations are considered basic

Chapter III, §8

λ◦ box complement of λ in the d× c rectangle

j◦ = c+ 1− j, label of the column in λ◦ corresponding to column j in λ

t◦ a tableau of shape λ◦ complementary to t §8.2, p. 92

τ◦ permutation in S[λ◦] obtained from τ ∈ S[λ] §8.3, p. 94

ψ (ψ̄) the map
∧l V → ∧d−l V ∗ (⊗ detV ) Definition 8.1, p. 89

Ψ (Ψ̄) the map
∧λ V → ∧λ◦′ V ∗ (⊗ (detV )⊗s) Definition 8.5, p. 93

S, s surplus (of a tableau or a permutation) §8.2, p. 93

Chapter III, §9

m =
(
m+n−1

m

)
Monr basis of Symr E consisting of monomials in X1, . . . , Xn of degree r

(Monr)
m set of m-tuples of elements of Monr (indexing a basis for (Symr E)⊗m)

Ξ an injection
⊔b−1
r=0 Monr → N §9.1, p. 105

<Ξ lexicographical ordering on monomials §9.1, p. 105

(Monr)
m
> set of weakly decreasing m-tuples of elements of Monr (indexing a basis for Symm Symr E)

(Monr)
m
> set of strictly decreasing m-tuples of elements of Monr (indexing a basis for

∧m Symr E)

w unique element of (Monm)m>

f⊗ = f1 ⊗ · · · ⊗ fm, the tensor product of f §9.1, p. 106

f∧ = f1 ∧ · · · ∧ fm, the alternating product of f §9.1, p. 106

f sym symmetrisation of f⊗ §9.1, p. 106

Z(f) an element of
∧m Syml+mE Definition 9.3, p. 106
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ζ a map Symm SymlE ⊗ (detE)⊗mM/n → ∧M Syml+mE Definition 9.3, p. 106

<Σ an ordering on tuples of monomials Definition 9.5, p. 107

ω a map (SymlE)
⊗m ⊗ (SymmE)⊗m → ∧m Syml+mE Definition 9.8, p. 109

Chapter III, §11

T subgroup of SL2(K) of diagonal matrices

B subgroup of SL2(K) of lower triangular matrices

−r r-weight space of a representation of SL2(K) (11.1), p. 115

Mγ =
(

1 0
γ 1

)
, an element of B

D defect set Definition 11.3, p. 116

tmax a tableau labelling a highest weight vector

P carry-free summand relation Definition 11.10, p. 120

Chapter IV

Skr skew symmetric power §12.1, p. 135

||t|| skew column tabloid of t Definition 12.1, p. 135

RSk
(t,A,B) a skew Garnir relation Definition 12.2, p. 136

RSk
(t,i,j) a skew snake relation Definition 12.3, p. 137

SkGRλ space of skew Garnir relations Definition 12.2, p. 136

δ the map Skλ
′
V �

∧λ′ V defined by ||t|| 7→ |t| §12.1, p. 136

Chapter V

〈n,m〉 = {n+m− 1, n+m− 3, . . . , n−m+ 3, n−m+ 1}, the (n,m)-string Definition 15.0, p. 165

Vm = Symm−1E; for m 6 p, the simple representation of SL2(Fp) of dimension m

Pm projective cover of Vm

µ multiplication map Vn ⊗ Vm → Vn+m−1 Definition 16.1, p. 169

λ a map Vn ⊗ Vm → Vn+1 ⊗ Vm−1 Definition 16.6, p. 172

G0(−) Grothendieck group Definition 16.18, p. 182

[U ] isomorphism class of U in the Grothendieck group

[V : U ] multiplicity of U as an indecomposable summand of V

A = A(n) table of multiplicities: matrix with entries A
(n)
i,j = [Vj : Vi ⊗ Vn] Definition 17.1, p. 191

G = G(n) graph with adjacency matrix A(n) Definition 17.1, p. 191
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A = A
(n)

a submatrix of A(n) Definition 17.8, p. 195

T matrix with 1s on the antidiagonal Definition 17.3, p. 192

d(i) degree of vertex i in G Definition 17.12, p. 198

w a weighting function Definition 17.14, p. 199

Q = Q(n) transition matrix for the non-projective summand random walk Definition 17.14, p. 199

Q = Q
(n)

a submatrix of Q(n) defined analogously to A
(n)
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